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INTRODUCTION

MODULAR CAPACITIVE WIRELESS POWER TRANSFER SYSTEM

 Array of metal pads in road and metal 
plates on-board vehicle

 Adjacent plate-pairs can be phase-
shifted with respect to one another 
using modular power electronics

 Phase-shifting reduces electric field 
strength in safety critical regions by 
canceling fringing fields generated by 
adjacent modules

MATCHING NETWORK OPTIMIZATION SUMMARY AND CONCLUSIONSCAPACITIVE WPT PROTOTYPES

 Each matching network stage provides gain and 
compensation for the capacitive reactance of the coupling 
plates, enabling effective power transfer

 Individual stages are optimally designed to maximize 
overall efficiency of the system 

 In the optimal design:

 Each stage on the primary side except the last stage 
provides equal gain

 Each stage on the secondary side except the first stage 
provides equal gain  

 Each intermediate stage provides equal compensation

Testing under realistic vehicle environment – metal shields 
emulate the vehicle chassis and road

 Capacitive wireless power transfer systems can enable 
efficient, high power transfer density and cost effective 
dynamic and stationary WPT for electric vehicles

 Modular approach can significantly enhance power transfer 
density in large air-gap applications while meeting safety 
requirements

 Ongoing work validates effective large air-gap capacitive 
wireless power transfer at high efficiency

Architecture of a modular 
capacitive WPT system

VBATVIN

Vehicle

Battery

Road Vehicle

Matching

Network

Matching

Network

Inverter Rectifier

Example implementation of a single 
capacitive WPT module

 Each module has a high-frequency 
inverter, two matching networks that 
provide voltage/current gain and 
reactive compensation, and a high-
frequency rectifier

 Appropriate design of matching 
networks and soft-switching of 
inverter and rectifier transistors enable 
high efficiency operation

Electromagnetic field safety requirements 

ICNIRP Magnetic Field Safety LimitsICNIRP Electric Field Safety Limits

 Transportation accounts for 71% of petroleum consumption, 
27% of total energy consumption, and 33% of total 
greenhouse gas emissions in the US

 Electric vehicles (EVs) have much higher well-to-wheel 
efficiency compared to gasoline vehicles

 Penetration of EVs remains low – main hurdles are:

 High cost 

 Limited range

 Long charging times

all due to limitations in battery technology

 Cost effective, high power transfer density and safe dynamic 
wireless power transfer (WPT) can drastically reduce the 
need for batteries
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 Current approaches to stationary
and dynamic WPT for EVs mostly
rely on inductive coupling

 Inductive systems have limitations:

 Require expensive and fragile 
ferrite cores for magnetic flux 
guidance and shielding

 Relatively low operating 
frequencies to limit losses, 
resulting in large size

 Capacitive charging of EVs through
tires has been tried

 Low efficiency due to carbon 
black filler

 Inadequate power transfer due to 
limited area

 Appropriately designed high
frequency capacitive WPT systems
can be less expensive, more
efficient and smaller than inductive
WPT systems

A capacitive WPT system with multistage L-section 
matching networks

3 kW 12-cm air-gap 
capacitive WPT system

(under development)
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Experimental waveforms of capacitive WPT system 
transferring 110 W power across a 12 cm air-gap at 90% 

efficiency
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Electromagnetic fields of a modular capacitive WPT 
system in powering and safety critical zone 
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Efficiency of optimized matching network

250 W 12-cm air-gap 
capacitive WPT system

(under development)

Target: 12 cm air-gap, 50 kW/m2, 
90% efficiency 


