
Learning in Rule-

Based

Recommendation

Systems
SHRINIDHI HUDLI* (WITH ARVIND HUDLI**)

*UCLA. NOW AT APPLE, INC.

**MS RAMAIAH INSTITUTE OF TECHNOLOGY, INDIA

Outline

� Problem description

� Rule-based systems

� Recommendation System approaches

� Learning

� Overrides

� Implementation

� Discussion

2

Problem Description

� Learning in rule-based recommendation system

� General problem, but specific application to course recommendation
systems

� Each year students choose (elective) courses for their curriculum

� Forces in play

� Interest – personal

� Proposed plan of study

� Pre-requisites

� Market opportunities

� Department requirements

� Advisor recommendations

� Building a course recommendation system that addresses all forces and
also learns

3

Prior Work

� Prior course recommendation systems were built on structural

relationship between courses and historical data*

� Lee and Cho propose a system based on perceived importance of

courses, number of electives in department, etc.

� T. Denley's Degree Compass, uses students past performance to match
degree goals of students

� Chu, et.al, propose a data mining and graph theoretic approach to
course recommendation

� Chen, et.al. describe an approach based on fuzzy item response theory

� In our view, course selection is not entirely individualistic or
autonomous like movie viewing or product purchases, as modeled

by previous approaches

� Course recommendations are subject to forces mentioned earlier

4

*References to these in accompanying paper

Solution Approach

� Use a knowledge-based system that

encodes rules addressing forces

determining a choice

� Build the initial knowledge system based on
input from experts

� Make course recommendations based on

constraints satisfaction

� Prioritize and prune recommendations

� To make them meaningful

� Learn based on feedback from
recommendations

� Reinforce based on positive feedback

� Penalize based on negative feedback

5

Knowledge
Base

Input from experts

Recommendations

Feedback

Learning

Rule-based Systems

� System infers outcomes – recommendations in our case – based
on rules in the knowledge-base

� Knowledge-base is the heart of rule-based systems

� Rule-engine’s inference process consists of match-select cycle of
rules

� Built on popular Rete Algorithm

� Rules are fired based matched based on constraints

� Known facts are matched with rules and chosen in a conflict set

� Matching rules are chosen from the conflict set based on priority of rules

� We extend standard inference mechanism by making priority
dynamic

6

Rules in Rule-Based systems

� Rules are of the form

� Left Hand Side (LHS) ⇒ Right Hand Side (RHS)

� LHS is a set of constraints, and RHS is inference if LHS is satisfied

� In a course recommendation system, LHS can capture interests, pre-requisites, prior-
course grades, conflicts, etc.

� It is possible that more than one rule is applicable

� Rule-priorities and conflicts determine which rules will eventually apply

� In a course-recommendation system, additional rules may have to be applied
based on departmental requirements

� For example a breadth requirement may force a particular course to be
recommended even if some constraints are not satisfied – for example student’s
interests

� Our system enhances the inferencing process

� Rule-engine match-select

� Post-processing match-select based on department’s mandatory requirements

7

Recommendation Systems

� Recommendations are based on collaborative filtering

� A mechanism where inputs from multiple users are used to make predictions
for a given user

� The user in question’s profile and interests are used to filter choices of users
with similar profile and interests

� We further refine and apply item-based collaborative filtering

� Recommendation of a given course may imply interest in another related

course

� We use course groups to either select or eliminate

� For example if Software Metrics course is recommended, we will not recommend

Quantitative Project Management – if only one course from a group can be chosen

8

Recommendation System Types

� Memory-based

� User data and actions are remembered and are used to establish
collaboration or correlation amongst other users

� Similarity measures such as Cosine Similarity, Jaccard coefficient are used to
correlate users interests

� Model-based

� More flexible in recommending items a user or user group has never
encountered before

� Uses probabilistic techniques ala Bayesian Network or Latent Semantic Analysis

� Association Rules

� Recommendations are based on causal relationship between entities

� For example a course’s pre-requisites and student’s prior course work

� Hybrid approach

� We use a hybrid approach and combine memory-based and association rules
in our recommendation subsystem

9

Learning

� In our context of rule-based recommendation system, we use

reinforcement learning

� Reinforcement learning dynamically changes rule firing priorities

� Useful recommendations improve probability of similar future

recommendations

� Not so useful recommendations – based on user feedback – reduce
probability of similar future recommendations

� The system learns to avoid unnecessary biases to smoothen out
probability adjustments

� Penalties and rewards change slowly and consider a wider user base

10

Overrides

� The system must support overrides from experts and departments

� For example the department may want students to “pick” courses like
Java Programming or Big Data

� Based on industry trend

� User interests or other factors influencing recommendations need to be
overridden if such courses are not chosen!

� We add a post-processing recommender to override recommendations
if necessary

� Override rules may be written to resolve conflicts and eliminate
collaborative filter based recommendation

11

Implementation

� Web-based Student Course

Recommendation System

� Separation of user system from

recommendation system

� User Interaction System built with
Python/Flask

� Rule-based recommender is built with a REST
endpoint, allowing it to be used in different

contexts (if needed)

� Built in Ruby and a 3rd party rule engine

12

User Interaction
System

Rule-based
Recommender

REST API

HTTP

Rule Engine Choices

� CLIPS

� Classic rule engine, first implemented by NASA in 1985

� Implemented in C

� Not well-suited for web applications

� PyCLIPS

� Python wrapper on CLIPS. Did not choose this either as it runs on Python 2.6
and our web component does not run on Python 2.6

� JBOSS Drools

� Very popular rule engine. DROOLS rules need to be compiled to Java each
time there is a change in rule. Less dynamic

� Ruleby ☑�

� Full functionality of DROOLS and CLIPS and implemented in Ruby. Has a DSL
syntax which allows new rules to be dynamically created

13

Rule Structure and Priorities

� Rules have two parts

� Antecedent

� Conditions that must be satisfied to be selected. Conditions may be based
on both user profile and user input. Certain courses may be offered only for
certain majors or students with certain interests

� Consequence

� Actions that will be performed if the antecedent is satisfied

� Priority that determines when a rule will be fired

� Priorities are generally static, but in our case they are dynamically
determined and adjusted based on user feedback

� Expert or override rules have the lowest priority, always 0

� The rules will apply at last and have effect only if overrides are needed

14

User Input

� User input comes in two forms

� User interests

�General area interest - high interest in programming
languages , low interest in theory

� Interest in related and pre-requisite courses

� User feedback

� User feedback for each course recommendation. This input is

used for reinforcement learning

15

Course Recommendations

� Courses may have relations amongst them, such as mutually

exclusive group

� At most only one course in the group would be recommended

� Example: Java Programming, C# Programming

� Certain courses may be offered only for students at certain level

� Example - graduate courses, freshman courses, etc.

� Course recommendations are grouped based on course groups

16

Sample Rule 17

rule :Java,
{:priority => priority("CS516","1","Java")},
[Student, :student, m.semester == 5] do |context|

s = context[:student]
(grade,interest) = s.pre_req("CS315")
interests = Array.new
interests << s.interest("programmming")
interests << s.interest("application")
area_interests = interests.max
if (interest < 7 || area_interests < 50)

skip context[:student]
else

if !$recommendedCourses.key?(s.name)
$recommendedCourses[s.name] = Array.new

end
elective = Hash.new
elective["group"] = "1"
elective["code"] = "CS514"
elective["name"] = "Java"
$recommendedCourses[s.name] << elective if s.interested?("CS516")

end
end

Override Rule 18

rule :ExpertRecomendation74, {:priority => 0},
[Student, :student, m.semester == 7] do |context|

s = context[:student]
courses = $recommendedCourses[s.name]
courses = Array.new if courses == nil
already_recommended = false
courses.each {|c|

already_recommended = true if c["code"] == "CS715"
}
if already_recommended == false

elective = Hash.new
elective["group"] = "4"
elective["code"] = "CS715"
elective["name"] = "Data Mining"
s.add_expert_recommendation(elective)

end
end

Learning-based adjustment of

priorities

� Rules are fired based on priorities

� Priorities are adjusted based on reinforcement learning

� Positive feedback increases priority of corresponding rule

� Negative feedback decreases priority of corresponding rule

� Rewards and penalties can be adjusted with different

coefficients

19

Results 20

� The course recommendation system was used for undergraduate

courses at Visvesvaraya Technological University

� Used for students in undergraduate computer science curriculum

� 600 students

� Initial results were very encouraging

� Further study needed to determine effectiveness of recommendations

Discussion

� Reinforcement learning in a rule-based course recommendation

system

� Recommender is a hybrid recommender using memory-based and

association rules methods

� Rule engine has dynamic priority of rules, allowing learning to influence
rule matches and selection

� Expert rules to override recommendations if necessary, with a static
priority of 0, always fired last

� Future work will incorporate dynamic addition of rules either by

added by the user or generated by the system while learning

21

