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Problem Description

� Learning in rule-based recommendation system 

� General problem, but specific application to course recommendation 
systems

� Each year students choose (elective) courses for their curriculum

� Forces in play

� Interest – personal

� Proposed plan of study 

� Pre-requisites

� Market opportunities 

� Department requirements

� Advisor recommendations

� Building a course recommendation system that addresses all forces and 
also learns 
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Prior Work

� Prior course recommendation systems were built on structural 

relationship between courses and historical data*

� Lee and Cho propose a system based on perceived importance of 

courses, number of electives in department, etc. 

� T. Denley's Degree Compass, uses students past performance to match 
degree goals of students

� Chu, et.al, propose a data mining and graph theoretic approach to 
course recommendation

� Chen, et.al. describe an approach based on fuzzy item response theory

� In our view, course selection is not entirely individualistic or 
autonomous like movie viewing or product purchases, as modeled 

by previous approaches

� Course recommendations are subject to forces mentioned earlier
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Solution Approach

� Use a knowledge-based system that 

encodes rules addressing forces 

determining a choice

� Build the initial knowledge system based on 
input from experts

� Make course recommendations based on 

constraints satisfaction

� Prioritize and prune recommendations 

� To make them meaningful

� Learn based on feedback from 
recommendations

� Reinforce based on positive feedback

� Penalize based on negative feedback
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Rule-based Systems

� System infers outcomes – recommendations in our case – based 
on rules in the knowledge-base

� Knowledge-base is the heart of rule-based systems

� Rule-engine’s inference process consists of match-select cycle of 
rules

� Built on popular Rete Algorithm 

� Rules are fired based matched based on constraints

� Known facts are matched with rules and chosen in a conflict set

� Matching rules are chosen from the conflict set based on priority of rules

� We extend standard inference mechanism by making priority 
dynamic
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Rules in Rule-Based systems

� Rules are of the form 

� Left Hand Side (LHS) ⇒ Right Hand Side (RHS)

� LHS is a set of constraints, and RHS is inference if LHS is satisfied

� In a course recommendation system, LHS can capture interests, pre-requisites, prior-
course grades, conflicts, etc.

� It is possible that more than one rule is applicable

� Rule-priorities and conflicts determine which rules will eventually apply 

� In a course-recommendation system, additional rules may have to be applied 
based on departmental requirements

� For example a breadth requirement may force a particular course to be 
recommended even if some constraints are not satisfied – for example student’s 
interests 

� Our system enhances the inferencing process

� Rule-engine match-select 

� Post-processing match-select based on department’s mandatory requirements
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Recommendation Systems

� Recommendations are based on collaborative filtering

� A mechanism where inputs from multiple users are used to make predictions 
for a given user 

� The user in question’s profile and interests are used to filter choices of users 
with similar profile and interests 

� We further refine and apply item-based collaborative filtering 

� Recommendation of a given course may imply interest in another related 

course

� We use course groups to either select or eliminate 

� For example if Software Metrics course is recommended, we will not recommend 

Quantitative Project Management – if only one course from a group can be chosen
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Recommendation System Types

� Memory-based 

� User data and actions are remembered and are used to establish 
collaboration or correlation amongst other users

� Similarity measures such as Cosine Similarity, Jaccard coefficient are used to 
correlate users interests

� Model-based

� More flexible in recommending items a user or user group has never 
encountered before 

� Uses probabilistic techniques ala Bayesian Network or Latent Semantic Analysis 

� Association Rules

� Recommendations are based on causal relationship between entities  

� For example a course’s pre-requisites and student’s prior course work 

� Hybrid approach

� We use a hybrid approach and combine memory-based and association rules 
in our recommendation subsystem
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Learning

� In our context of rule-based recommendation system, we use 

reinforcement learning 

� Reinforcement learning dynamically changes rule firing priorities

� Useful recommendations improve probability of similar future 

recommendations

� Not so useful recommendations – based on user feedback – reduce 
probability of similar future recommendations

� The system learns to avoid unnecessary biases to smoothen out 
probability adjustments 

� Penalties and rewards change slowly and consider a wider user base
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Overrides

� The system must support overrides from experts and departments

� For example the department may want students to “pick” courses like 
Java Programming or Big Data

� Based on industry trend

� User interests or other factors influencing recommendations need to be 
overridden if such courses are not chosen! 

� We add a post-processing recommender to override recommendations 
if necessary

� Override rules may be written to resolve conflicts and eliminate 
collaborative filter based recommendation
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Implementation

� Web-based Student Course 

Recommendation System

� Separation of user system from 

recommendation system

� User Interaction System built with 
Python/Flask

� Rule-based recommender is built with a REST 
endpoint, allowing it to be used in different 

contexts (if needed)

� Built in Ruby and a 3rd party rule engine
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Rule Engine Choices

� CLIPS

� Classic rule engine, first implemented by NASA in 1985

� Implemented in C 

� Not well-suited for web applications 

� PyCLIPS

� Python wrapper on CLIPS. Did not choose this either as it runs on Python 2.6 
and our web component does not run on Python 2.6

� JBOSS Drools

� Very popular rule engine. DROOLS rules need to be compiled to Java each 
time there is a change in rule. Less dynamic

� Ruleby ☑�

� Full functionality of DROOLS and CLIPS and implemented in Ruby. Has a DSL 
syntax which allows new rules to be dynamically created
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Rule Structure and Priorities

� Rules have two parts 

� Antecedent

� Conditions that must be satisfied to be selected. Conditions may be based 
on both user profile and user input. Certain courses may be offered only for 
certain majors or students with certain interests

� Consequence

� Actions that will be performed if the antecedent is satisfied

� Priority that determines when a rule will be fired

� Priorities are generally static, but in our case they are dynamically 
determined and adjusted based on user feedback

� Expert or override rules have the lowest priority, always 0

� The rules will apply at last and have effect only if overrides are needed
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User Input

� User input comes in two forms

� User interests 

�General area interest  - high interest in programming 
languages , low interest in theory 

� Interest in related and pre-requisite courses 

� User feedback 

� User feedback for each course recommendation. This input is 

used for reinforcement learning 
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Course Recommendations

� Courses may have relations amongst them, such as mutually 

exclusive group

� At most only one course in the group would be recommended 

� Example: Java Programming, C# Programming 

� Certain courses may be offered only for students at certain level

� Example - graduate courses, freshman courses, etc. 

� Course recommendations are grouped based on course groups
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Sample Rule 17

rule :Java,
{:priority => priority("CS516","1","Java")},
[Student, :student, m.semester == 5] do |context|

s = context[:student]
(grade,interest) = s.pre_req("CS315")
interests = Array.new
interests << s.interest("programmming")
interests << s.interest("application")
area_interests = interests.max
if (interest < 7 || area_interests < 50)

skip context[:student]
else

if !$recommendedCourses.key?(s.name) 
$recommendedCourses[s.name] = Array.new

end
elective = Hash.new
elective["group"] = "1"
elective["code"] = "CS514"
elective["name"] = "Java"
$recommendedCourses[s.name] << elective if s.interested?("CS516")

end
end



Override Rule 18

rule :ExpertRecomendation74, {:priority => 0},
[Student, :student, m.semester == 7] do |context|

s = context[:student]
courses = $recommendedCourses[s.name]
courses = Array.new if courses == nil
already_recommended = false
courses.each {|c|

already_recommended = true if c["code"] == "CS715"
}
if already_recommended == false

elective = Hash.new
elective["group"] = "4"
elective["code"] = "CS715"
elective["name"] = "Data Mining"
s.add_expert_recommendation(elective)

end
end



Learning-based adjustment of 

priorities

� Rules are fired based on priorities 

� Priorities are adjusted based on reinforcement learning

� Positive feedback increases priority of corresponding rule 

� Negative feedback decreases priority of corresponding rule

� Rewards and penalties can be adjusted with different 

coefficients 
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Results 20

� The course recommendation system was used for undergraduate 

courses at Visvesvaraya Technological University

� Used for students in undergraduate computer science curriculum 

� 600 students  

� Initial results were very encouraging 

� Further study needed to determine effectiveness of recommendations  



Discussion

� Reinforcement learning in a rule-based course recommendation 

system

� Recommender is a hybrid recommender using memory-based and 

association rules methods

� Rule engine has dynamic priority of rules, allowing learning to influence 
rule matches and selection 

� Expert rules to override recommendations if necessary, with a static 
priority of 0, always fired last 

� Future work will incorporate dynamic addition of rules either by 

added by the user or generated by the system while learning
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