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Who Am I?

� Tim Kertis, Software Engineer/Software Architect 

� Chief Software Architect, Raytheon IIS, Indianapolis

� Master of Science, Computer & Information Science, Purdue 

� Software Architecture Professional through the Software Engineering 
Institute (SEI), Carnegie-Mellon University (CMU)

� 30 years of diverse Software Engineering Experience

� Advocate for Secure Coding Frameworks (SCFs)

� Author of the JAVA Secure Coding Framework (JSCF)

� Inventor of Cybersecurity thru Lexical And Symbolic Proxy (CLaSP) 
technology (patent pending)

10/22/2015 2
Secure Coding Frameworks



Top 5 Cybersecurity Concerns …

� 1 - Application 

Vulnerabilities

� 2 - Malware

� 3 - Configuration Mistakes

� 4 - Mobile Devices

� 5 - Hackers

� According to the 2015 ISC(2) 
Global Information Security 
Workforce Study (Paresh 
Rathod)

10/22/2015 3
Secure Coding Frameworks



Worldwide Market Indicators 2014 … 

Number of Software 
Developers:

� 18,000,000+ (www.infoq.com)

Number of Java Software 
Developers:

� 9,000,000+ (www.infoq.com)

Software with Vulnerabilities:

� 96% (www.cenzic.com)

Total Cost of Cyber Crime:

� $500B (McCafee) 

Cost of Cyber Incidents:

� Low $1.6M

� Average $12.7M

� High $61.0M

(Ponemon Institute)  
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Research Conducted

� SEI Secure Coding 
Standard 
– Rules and Recommendations

– Priorities and Levels

– Vulnerabilities and Remedies

� Common Weakness 
Enumeration (CWE)
– Common Software Weaknesses

� Open Web Application 
Security Project (OWASP) 
– Language-Agnostic/ 
Framework-Agnostic Developer 
Guide

� Top 10 Programming 
Languages
– C, C++, C#, Objective-C, Java, 
JavaScript, Perl, PHP, Python, 
VB 

– Primitives, Operators and 
Standard Libraries

� The Ada Programming 
Language
– Range Constraints

– Real-Time Constructs
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SEI CERT Coding Standards

�Overview
– This site supports the development 
of coding standards for commonly 
used programming languages such 
as C, C++, Java, and Perl, and the 
AndroidTM platform. 

– These standards are developed 
through a broad-based community 
effort by members of the software 
development and software security 
communities.

�Website
– https://www.securecoding.cert.or
g/confluence/display/seccode/SE
I+CERT+Coding+Standards
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SEI Secure Coding Standard for Java

� Rules
– 00 Input Validation and Data Sanitization (IDS)

– 01 Declarations and Initialization (DCL)

– 02 Expressions (EXP)

� 03 Numeric Types and Operations (NUM)

– 04 Characters and Strings (STR)

– 05 Object Orientation (OBJ)

– 06 Methods (MET)

– 07 Exceptional Behavior (ERR)

– 08 Visibility and Atomicity (VNA)

– 09 Locking (LCK)

– 10 Thread APIs (THI)

– 11 Thread Pools (TPS)

– 12 Thread-Safety Miscellaneous (TSM)

– 13 Input Output (FIO)

– 14 Serialization (SER)

– 15 Platform Security (SEC)

– 16 Runtime Environment (ENV)

– 17 Java Native Interface (JNI)

– 49 Miscellaneous (MSC)

– 50 Android (DRD)

� Recommendations
– 00 Input Validation and Data Sanitization (IDS)

– 01 Declarations and Initialization (DCL)

– 02 Expressions (EXP)

– 03 Numeric Types and Operations (NUM)

– 04 Characters and Strings (STR)

– 05 Object Orientation (OBJ)

– 06 Methods (MET)

– 07 Exceptional Behavior (ERR)

– 13 Input Output (FIO)

– 15 Platform Security (SEC)

– 18 Concurrency (CON)

– 49 Miscellaneous (MSC)

– AA References

– BB Definitions

– CC Analyzers
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Rule 03: 

Numeric Types and Operations (NUM)

� Rules
�NUM00-J. Detect or prevent integer overflow

– NUM01-J. Do not perform bitwise and arithmetic operations on the same data

– NUM02-J. Ensure that division and remainder operations do not result in divide-by-zero 
errors

– NUM03-J. Use integer types that can fully represent the possible range of unsigned data

– NUM04-J. Do not use floating-point numbers if precise computation is required

– NUM07-J. Do not attempt comparisons with NaN

– NUM08-J. Check floating point inputs for exceptional values

– NUM09-J. Do not use floating point numbers as loop counters

– NUM10-J. Do not construct BigDecimal objects from floating-point literals

– NUM11-J. Do not compare or inspect the string representation of floating-point values

– NUM12-J. Ensure conversions of numeric types to narrower types do not result in lost or 
misinterpreted data

– NUM14-J. Use shift operators correctly
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NUM00-J. Detect or prevent integer overflow

� Programs must not allow 
mathematical operations to 
exceed the integer ranges 
provided by their primitive integer 
data types. According to The Java 
Language Specification (JLS), 
§4.2.2, "Integer Operations" [JLS 
2015]:

� The built-in integer operators do 
not indicate overflow or 
underflow in any way. 

� Integer operators can throw a 
NullPointerException if unboxing 
conversion of a null reference is 
required. 

� Other than that, the only integer 
operators that can throw an 
exception are the integer divide 
operator / and the integer 
remainder operator %, which 
throw an ArithmeticException if the 
right-hand operand is zero, and 
the increment and decrement 
operators ++ and -- which can 
throw an OutOfMemoryError if 
boxing conversion is required and 
there is insufficient memory to 
perform the conversion.
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Root Cause Analysis & Resolution

� Issue
– Integer Overflow/Underflow is Ignored 

(in Java)

� Possible Root Cause 
– Java Application Source Code
– Java Programming Language 

Implementation 
– Java Programming Language 

Specification
– Java Virtual Machine Implementation
– Java Virtual Machine Specification
– Integer Math Processor Unit
– IEEE Standard 754 

� Conclusion
– Integer overflow/underflow indicator bits 

provided in IEEE 754 are ignored in the 
Java Programming Language 
Specification

– Java has flaws in INT primitive and 
operators +, -, *, /, >>>, >>, <<, etc.

� Resolution(s)
– Use an infinitely ranged integer
– Raise a run-time constraint violation 

SEI provides a full discussion of the 
Integer vulnerability and remedy in:
As-If Infinitely Ranged Integer Model, 
Second Edition, April 2010
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Top 10 Programming Languages

� TIOBE Index (2015)
– #1 Java (19.565%)

– #3 C++ (15.621%)

– #4 C# (6.782%)

– #5 Python (3.664%)

– #6 PHP (2.530%)

– #7 JavaScript (2.342%)

– #8 VB .NET (2.062%)

– #9 Perl (1.899%)

– #10  Objective-C (1.821%)

http://www.tiobe.com/index.php/content/paper
info/tpci/index.html

… based on number of web page references.

� PYPL Index (2014)
– #1 Java (25.5%)

– #2 PHP (11.4%)

– #3 Python (11.1%)

– #4 C# (9.2%)

– #5 C++ (7.7%)

– #6 JavaScript (7.3%)

– #7 Objective-C (5.3%)

– #13 VB .NET (2.1%) 

– #15 Perl (1.3%)

https://sites.google.com/site/pydatalog/pypl/pyt
hon-blog/pythonisthelanguageoftheyear

… based on number of Google searches.
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Conclusions
The following problems were diagnosed as 
the root cause of the majority of 
cybersecurity vulnerability types (and 
safety/reliability issues) in software 
applications:

� Programming Language 
Flaws
– Silent integer underflow/overflow in 

math operations
– Silent floating point floors/ceilings in 

math operations
– Silent loss of magnitude, sign and/or 

precision in numeric type casts

� Programming Language 
Weaknesses
– Lack of user-defined range constraints 

and subsequent bounds checking on 
numeric data types to support input 
validation

– Lack of bounds checking on array 
indexing resulting in buffer overflow

– Lack of adequate built-in memory 
management of primitives to eliminate 
null pointer dereferencing

� Standard Library 
Weaknesses
– Lack of specialized strings for filtering 

and validating characters and 
sequences in character stings 
(filenames, database names, SQL, 
URL, HTTP, LDAP, XSS, etc.)
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The Secure Coding Framework 

Problem: 
� Mainstream programming languages 
have significant security 
vulnerabilities and weaknesses and 
their component libraries also have 
weaknesses that can be exploited

� To remedy this, developers can apply 
static analysis tools and rework 
software in accordance with the SEI 
Secure Coding Standards

� Developing secure code this way can 
be prohibitively difficult and expensive

� Mainstream programming languages 
were not designed for the 
development of secure applications

Solution:
� Provide developers with a Secure 
Coding Framework (SCF) protecting 
against the programming language’s 
inherent security vulnerabilities and 
component library flaws and/or misuse

� Replace (by wrapping)  primitives and 
operators with secure classes and 
methods

� Use the SCF to simplify and expedite 
the development of safe, secure and 
reliable code

� Provide developers with a platform for 
the development of safe, secure and 
reliable software applications from the 
ground up 
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Mainstream Programming Language  Lexical 

vs. JSCF Class Substitute …

Lexical (Primitives):
� byte, byte[]

� char, char[]

� short, short[]

� int, int[]

� long, long[]

� float, float[]

� double, double[]

� String (class)

Classes:
� SecureByte, SecureByteArray

� SecureCharacter, 
SecureCharacterArray

� SecureShort, SecureShortArray

� SecureInteger, SecureIntegerArray

� SecureLong, SecureLongArray

� SecureFloat, SecureFloatArray

� SecureDouble, SecureDoubleArray

� SecureString, SecureSQLString, 
SecureURLString, etc. 
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Mainstream Programming Language Symbolic 

vs. JSCF Method Substitute …

Symbolic (Operators):
� =
� +, -, *, +=, -=, *=
� /, %, /=, %=
� ==, !=
� <, <= , >, >= 
� >>, <<, >>>
� ++, --
� &, |, ^

Methods:
� equal()
� add(), subtract(), multiply(),
� divide(), modulo()
� equalTo(), EQ(), notEqualTo(), 
NEQ()

� lessThan(), LT(), 
lessThanOrEqualTo(), LTE(), 
greaterThan(), GT(), 
greaterThanOrEqualTo(), GTE(), 

� rightShift(), leftShift(), 
rightShiftZero()

� increment(), decrement()
� bitwiseAnd(), bitwiseOr(), 
bitwiseXor()
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JSCF Typecasting Methods …

Syntax:

� (byte)

� (char)

� (short)

� (int)

� (long)

� (float)

� (double)

JSCF Methods:

� toByte()

� toCharacter()

� toShort()

� toInteger()

� toLong()

� toFloat()

� toDouble()
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Other Useful Methods of JSCF …

Constructors:
� SecureByte(), SecureByteArray()
� SecureCharacter(), 
SecureCharacterArray()

� SecureShort(), SecureShortArray
� SecureInteger(), 
SecureIntegerArray()

� SecureLong(), SecureLongArray()
� SecureFloat(), SecureFloatArray()
� SecureDouble(), 
SecureDoubleArray()

� SecureString()

User-Defined Ranges:
� range()
� minimum(), maximum()
� isByte(), isCharacter(), isShort(), 
isInteger(), isLong(), isFloat(), 
isDouble()

Interface to Legacy Code:
� value() – returns primitive/literal
� init() – init with primitive/literal
� index() – index with primitive/ literal 
value
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Assignment Statement Example

Java vs JSCF

� Java
import java.lang.System.out;

…

int inputAngle = 360;

…

public static final int MIN_ANGLE = 0;

public static final int MAX_ANGLE = 359;

int angle = 0; 

…

if (inputAngle >= MIN_ANG && inputAngle <= 
MAX_ANG) {

angle = inputAngle;

} else {

System.out.println(“Invalid input detected.”);

System.out.print(“ANGLE =“);

System.out.println(inputAngle);

}

� JSCF
import jscf.SecureInteger;

import jscf.RangeConstraintException;

…

SecureInteger inputAngle = new SecureInteger(360);

…

SecureInteger angle =  

new SecureInteger(0, 359);

…

try {

angle.setEqualTo(inputAngle);

} catch (RangeConstraintException e) {

e.printStackTrace();

}
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Exception Handling in JSCF …

Vulnerability:

� Integer Overflow

� Integer Underflow

� Floating Point Floor

� Floating Point Ceiling

� Loss of Sign

� Loss of Magnitude

� Loss of Precision

� Range Constraint

� <etc> …

Exceptions:

� IntegerOverflowException

� IntegerUnderflowException

� <etc> … 
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Mainstream Programming Language 

Vulnerability vs. SCF Remedy Tactic …

Vulnerability:

� Silent Integer Overflow / 
Underflow in Math Ops

� Silent Floating Point Floor / 
Ceiling in Math Ops

� Silent Loss of Sign / Magnitude 
/ Precision in Narrowing Implicit 
/ Explicit Type Conversions

Remedy Tactic:

� Exception Thrown / Handling for 
Integer Overflow / Underflow

� Exception Thrown / Handling for 
Floating Point Floor / Ceiling

� Exception Thrown / Handling for 
Loss of Sign / Magnitude / 
Precision in Narrowing  Explicit 
Type Conversion

� No Implicit Type Conversions
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Mainstream Programming Language 

Vulnerability vs. SCF Remedy Tactic …

Vulnerability:

� Uninitialized Memory

�Memory Leaks

� Arbitrary Code Execution

� Stack Overflow/Overrun

� Heap Overflow/Overrun

� Null Pointer Dereferencing

� Dangling Pointers

Remedy Tactics:

� Constructor(s) Initialization

� Destructor/Finally/Other 
Deallocation

� Array Index Checking

� Array Index Checking

� No Pointers/No Primitives

� No Pointers/No Primitives

� No Pointers/No Primitives
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Mainstream Programming Language 

Vulnerability vs. SCF Remedy Tactic …

� Invalid Parameter Inputs 

� Direct Filename References * 

� Direct Database References

� Network Functions *

� SQL Injection *

� URL  Injection

� HTTP Injection   

� LDAP Injection 

� Cross-Site Scripting 

� Cross-Site Request Forgery 

� User-Defined Range Constraint 

� Text Filters/Filename String Class

� Text Filters/Database String Class

� Network SSL Functions

� Text Filters/SQL String Class

� Text Filters/URL String Class

� Text Filters/HTTP String Class

� Text Filters/LDAP String Class

� Text Filters/XSS String Class

� Text Filters/HTTP String Class
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Mainstream Programming Language  Gap vs. 

SCF New Feature …

Gaps:
� Vulnerable Primitives and 
Operators

� Lack of User-Defined Range 
Constraints on Primitive Values

� Lack of Character Filters on 
Strings & String Derivatives

� Limitations on Long Integer 
Values

� Limitations on Double Values
� No Type for Currency
� No Instrumentation

New Features:
� Secure Classes and Methods  
replace Vulnerable Primitives and 
Operators

� Exception Handling for User-
Defined Range Constraints

� Exception Handling for Violations 
of Character Filters on Strings

� BigInteger Class with No Limits
� BigDouble Class with No Limits
� Big Decimal Class
� Exception Handling-based 
Instrumentation Hooks
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Exception Handling and

Instrumentation Hooks …

� Trigger Alerts

� Trigger Error Messages

� Trigger Event Log

� Trigger E-Mail

� Trigger IPC Message

� Identify Programmer Errors

� Feedback to Software Vendor

� Support Application Monitoring

� Support Application Monitoring 
in the Cloud

� Support Application Monitoring 
across the Enterprise

� Situational Awareness across 
Product Deployment Area

� Identify Malicious Behavior

� Automated Real-Time Bug 
Reporting and Patch 
Management
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Intellectual Property … 

� Cyber security thru Lexical 
and Symbolic Proxy (CLaSP)

� Encapsulates and Substitutes 
Lexical Elements (private 
primitives) with Safe Classes

� Encapsulates and Substitutes 
Symbolic Elements (public 
operators) with Safe Methods

� Applies only to Object-Oriented 
(OO) Programming Languages

� CLaSP is the patentable idea 
that defines the entire process 
of transforming any general 
purpose OO programming 
language (with inherent cyber 
security vulnerabilities) into a 
safe, secure and reliable coding 
platform.

� Security is the #1 priority  
software quality attribute of the 
Secure Coding Framework.

� USPO patent is pending.

10/22/2015 25
Secure Coding Frameworks



Benefits of SCF …

� Assures safe, secure and 
reliable source code in area 
of addressed vulnerabilities

� Reduces/eliminates the need 
for static analysis in area of 
addressed vulnerabilities

� Easy integration of new SCF 
code with legacy code

� No need to learn a new 
programming language

� Easy to learn

� Class and method naming 
conventions that echo that of 
the primitives and operators

� SCF source code baseline 
that conforms to the SEI 
Secure Coding Standard

� Supports SEI Secure Coding 
Standards for new 
development
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SCF Software Architecture
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