
Copyright © 2015 Raytheon Company. All rights reserved.
Customer Success Is Our Mission is a registered trademark of Raytheon Company.

For the Development of Safe, Secure and Reliable Code

Tim Kertis
October 2015

The 27th Annual IEEE Software Technology Conference

Secure Coding Frameworks

Building
Cybersecurity
from the Ground
Up

Who Am I?

� Tim Kertis, Software Engineer/Software Architect

� Chief Software Architect, Raytheon IIS, Indianapolis

� Master of Science, Computer & Information Science, Purdue

� Software Architecture Professional through the Software Engineering
Institute (SEI), Carnegie-Mellon University (CMU)

� 30 years of diverse Software Engineering Experience

� Advocate for Secure Coding Frameworks (SCFs)

� Author of the JAVA Secure Coding Framework (JSCF)

� Inventor of Cybersecurity thru Lexical And Symbolic Proxy (CLaSP)
technology (patent pending)

10/22/2015 2
Secure Coding Frameworks

Top 5 Cybersecurity Concerns …

� 1 - Application

Vulnerabilities

� 2 - Malware

� 3 - Configuration Mistakes

� 4 - Mobile Devices

� 5 - Hackers

� According to the 2015 ISC(2)
Global Information Security
Workforce Study (Paresh
Rathod)

10/22/2015 3
Secure Coding Frameworks

Worldwide Market Indicators 2014 …

Number of Software
Developers:

� 18,000,000+ (www.infoq.com)

Number of Java Software
Developers:

� 9,000,000+ (www.infoq.com)

Software with Vulnerabilities:

� 96% (www.cenzic.com)

Total Cost of Cyber Crime:

� $500B (McCafee)

Cost of Cyber Incidents:

� Low $1.6M

� Average $12.7M

� High $61.0M

(Ponemon Institute)

10/22/2015 4
Secure Coding Frameworks

Research Conducted

� SEI Secure Coding
Standard
– Rules and Recommendations

– Priorities and Levels

– Vulnerabilities and Remedies

� Common Weakness
Enumeration (CWE)
– Common Software Weaknesses

� Open Web Application
Security Project (OWASP)
– Language-Agnostic/
Framework-Agnostic Developer
Guide

� Top 10 Programming
Languages
– C, C++, C#, Objective-C, Java,
JavaScript, Perl, PHP, Python,
VB

– Primitives, Operators and
Standard Libraries

� The Ada Programming
Language
– Range Constraints

– Real-Time Constructs

10/22/2015 5
Secure Coding Frameworks

SEI CERT Coding Standards

�Overview
– This site supports the development
of coding standards for commonly
used programming languages such
as C, C++, Java, and Perl, and the
AndroidTM platform.

– These standards are developed
through a broad-based community
effort by members of the software
development and software security
communities.

�Website
– https://www.securecoding.cert.or
g/confluence/display/seccode/SE
I+CERT+Coding+Standards

10/22/2015 6
Secure Coding Frameworks

SEI Secure Coding Standard for Java

� Rules
– 00 Input Validation and Data Sanitization (IDS)

– 01 Declarations and Initialization (DCL)

– 02 Expressions (EXP)

� 03 Numeric Types and Operations (NUM)

– 04 Characters and Strings (STR)

– 05 Object Orientation (OBJ)

– 06 Methods (MET)

– 07 Exceptional Behavior (ERR)

– 08 Visibility and Atomicity (VNA)

– 09 Locking (LCK)

– 10 Thread APIs (THI)

– 11 Thread Pools (TPS)

– 12 Thread-Safety Miscellaneous (TSM)

– 13 Input Output (FIO)

– 14 Serialization (SER)

– 15 Platform Security (SEC)

– 16 Runtime Environment (ENV)

– 17 Java Native Interface (JNI)

– 49 Miscellaneous (MSC)

– 50 Android (DRD)

� Recommendations
– 00 Input Validation and Data Sanitization (IDS)

– 01 Declarations and Initialization (DCL)

– 02 Expressions (EXP)

– 03 Numeric Types and Operations (NUM)

– 04 Characters and Strings (STR)

– 05 Object Orientation (OBJ)

– 06 Methods (MET)

– 07 Exceptional Behavior (ERR)

– 13 Input Output (FIO)

– 15 Platform Security (SEC)

– 18 Concurrency (CON)

– 49 Miscellaneous (MSC)

– AA References

– BB Definitions

– CC Analyzers

10/22/2015 7
Secure Coding Frameworks

Rule 03:

Numeric Types and Operations (NUM)

� Rules
�NUM00-J. Detect or prevent integer overflow

– NUM01-J. Do not perform bitwise and arithmetic operations on the same data

– NUM02-J. Ensure that division and remainder operations do not result in divide-by-zero
errors

– NUM03-J. Use integer types that can fully represent the possible range of unsigned data

– NUM04-J. Do not use floating-point numbers if precise computation is required

– NUM07-J. Do not attempt comparisons with NaN

– NUM08-J. Check floating point inputs for exceptional values

– NUM09-J. Do not use floating point numbers as loop counters

– NUM10-J. Do not construct BigDecimal objects from floating-point literals

– NUM11-J. Do not compare or inspect the string representation of floating-point values

– NUM12-J. Ensure conversions of numeric types to narrower types do not result in lost or
misinterpreted data

– NUM14-J. Use shift operators correctly

10/22/2015 8
Secure Coding Frameworks

NUM00-J. Detect or prevent integer overflow

� Programs must not allow
mathematical operations to
exceed the integer ranges
provided by their primitive integer
data types. According to The Java
Language Specification (JLS),
§4.2.2, "Integer Operations" [JLS
2015]:

� The built-in integer operators do
not indicate overflow or
underflow in any way.

� Integer operators can throw a
NullPointerException if unboxing
conversion of a null reference is
required.

� Other than that, the only integer
operators that can throw an
exception are the integer divide
operator / and the integer
remainder operator %, which
throw an ArithmeticException if the
right-hand operand is zero, and
the increment and decrement
operators ++ and -- which can
throw an OutOfMemoryError if
boxing conversion is required and
there is insufficient memory to
perform the conversion.

10/22/2015 9
Secure Coding Frameworks

Root Cause Analysis & Resolution

� Issue
– Integer Overflow/Underflow is Ignored

(in Java)

� Possible Root Cause
– Java Application Source Code
– Java Programming Language

Implementation
– Java Programming Language

Specification
– Java Virtual Machine Implementation
– Java Virtual Machine Specification
– Integer Math Processor Unit
– IEEE Standard 754

� Conclusion
– Integer overflow/underflow indicator bits

provided in IEEE 754 are ignored in the
Java Programming Language
Specification

– Java has flaws in INT primitive and
operators +, -, *, /, >>>, >>, <<, etc.

� Resolution(s)
– Use an infinitely ranged integer
– Raise a run-time constraint violation

SEI provides a full discussion of the
Integer vulnerability and remedy in:
As-If Infinitely Ranged Integer Model,
Second Edition, April 2010

10/22/2015 10
Secure Coding Frameworks

Top 10 Programming Languages

� TIOBE Index (2015)
– #1 Java (19.565%)

– #3 C++ (15.621%)

– #4 C# (6.782%)

– #5 Python (3.664%)

– #6 PHP (2.530%)

– #7 JavaScript (2.342%)

– #8 VB .NET (2.062%)

– #9 Perl (1.899%)

– #10 Objective-C (1.821%)

http://www.tiobe.com/index.php/content/paper
info/tpci/index.html

… based on number of web page references.

� PYPL Index (2014)
– #1 Java (25.5%)

– #2 PHP (11.4%)

– #3 Python (11.1%)

– #4 C# (9.2%)

– #5 C++ (7.7%)

– #6 JavaScript (7.3%)

– #7 Objective-C (5.3%)

– #13 VB .NET (2.1%)

– #15 Perl (1.3%)

https://sites.google.com/site/pydatalog/pypl/pyt
hon-blog/pythonisthelanguageoftheyear

… based on number of Google searches.

10/22/2015 11
Secure Coding Frameworks

Conclusions
The following problems were diagnosed as
the root cause of the majority of
cybersecurity vulnerability types (and
safety/reliability issues) in software
applications:

� Programming Language
Flaws
– Silent integer underflow/overflow in

math operations
– Silent floating point floors/ceilings in

math operations
– Silent loss of magnitude, sign and/or

precision in numeric type casts

� Programming Language
Weaknesses
– Lack of user-defined range constraints

and subsequent bounds checking on
numeric data types to support input
validation

– Lack of bounds checking on array
indexing resulting in buffer overflow

– Lack of adequate built-in memory
management of primitives to eliminate
null pointer dereferencing

� Standard Library
Weaknesses
– Lack of specialized strings for filtering

and validating characters and
sequences in character stings
(filenames, database names, SQL,
URL, HTTP, LDAP, XSS, etc.)

10/22/2015 12
Secure Coding Frameworks

The Secure Coding Framework

Problem:
� Mainstream programming languages
have significant security
vulnerabilities and weaknesses and
their component libraries also have
weaknesses that can be exploited

� To remedy this, developers can apply
static analysis tools and rework
software in accordance with the SEI
Secure Coding Standards

� Developing secure code this way can
be prohibitively difficult and expensive

� Mainstream programming languages
were not designed for the
development of secure applications

Solution:
� Provide developers with a Secure
Coding Framework (SCF) protecting
against the programming language’s
inherent security vulnerabilities and
component library flaws and/or misuse

� Replace (by wrapping) primitives and
operators with secure classes and
methods

� Use the SCF to simplify and expedite
the development of safe, secure and
reliable code

� Provide developers with a platform for
the development of safe, secure and
reliable software applications from the
ground up

10/22/2015 13
Secure Coding Frameworks

Mainstream Programming Language Lexical

vs. JSCF Class Substitute …

Lexical (Primitives):
� byte, byte[]

� char, char[]

� short, short[]

� int, int[]

� long, long[]

� float, float[]

� double, double[]

� String (class)

Classes:
� SecureByte, SecureByteArray

� SecureCharacter,
SecureCharacterArray

� SecureShort, SecureShortArray

� SecureInteger, SecureIntegerArray

� SecureLong, SecureLongArray

� SecureFloat, SecureFloatArray

� SecureDouble, SecureDoubleArray

� SecureString, SecureSQLString,
SecureURLString, etc.

10/22/2015 14
Secure Coding Frameworks

Mainstream Programming Language Symbolic

vs. JSCF Method Substitute …

Symbolic (Operators):
� =
� +, -, *, +=, -=, *=
� /, %, /=, %=
� ==, !=
� <, <= , >, >=
� >>, <<, >>>
� ++, --
� &, |, ^

Methods:
� equal()
� add(), subtract(), multiply(),
� divide(), modulo()
� equalTo(), EQ(), notEqualTo(),
NEQ()

� lessThan(), LT(),
lessThanOrEqualTo(), LTE(),
greaterThan(), GT(),
greaterThanOrEqualTo(), GTE(),

� rightShift(), leftShift(),
rightShiftZero()

� increment(), decrement()
� bitwiseAnd(), bitwiseOr(),
bitwiseXor()

10/22/2015 15
Secure Coding Frameworks

JSCF Typecasting Methods …

Syntax:

� (byte)

� (char)

� (short)

� (int)

� (long)

� (float)

� (double)

JSCF Methods:

� toByte()

� toCharacter()

� toShort()

� toInteger()

� toLong()

� toFloat()

� toDouble()

10/22/2015 16
Secure Coding Frameworks

Other Useful Methods of JSCF …

Constructors:
� SecureByte(), SecureByteArray()
� SecureCharacter(),
SecureCharacterArray()

� SecureShort(), SecureShortArray
� SecureInteger(),
SecureIntegerArray()

� SecureLong(), SecureLongArray()
� SecureFloat(), SecureFloatArray()
� SecureDouble(),
SecureDoubleArray()

� SecureString()

User-Defined Ranges:
� range()
� minimum(), maximum()
� isByte(), isCharacter(), isShort(),
isInteger(), isLong(), isFloat(),
isDouble()

Interface to Legacy Code:
� value() – returns primitive/literal
� init() – init with primitive/literal
� index() – index with primitive/ literal
value

10/22/2015 17
Secure Coding Frameworks

Assignment Statement Example

Java vs JSCF

� Java
import java.lang.System.out;

…

int inputAngle = 360;

…

public static final int MIN_ANGLE = 0;

public static final int MAX_ANGLE = 359;

int angle = 0;

…

if (inputAngle >= MIN_ANG && inputAngle <=
MAX_ANG) {

angle = inputAngle;

} else {

System.out.println(“Invalid input detected.”);

System.out.print(“ANGLE =“);

System.out.println(inputAngle);

}

� JSCF
import jscf.SecureInteger;

import jscf.RangeConstraintException;

…

SecureInteger inputAngle = new SecureInteger(360);

…

SecureInteger angle =

new SecureInteger(0, 359);

…

try {

angle.setEqualTo(inputAngle);

} catch (RangeConstraintException e) {

e.printStackTrace();

}

10/22/2015 18
Secure Coding Frameworks

Exception Handling in JSCF …

Vulnerability:

� Integer Overflow

� Integer Underflow

� Floating Point Floor

� Floating Point Ceiling

� Loss of Sign

� Loss of Magnitude

� Loss of Precision

� Range Constraint

� <etc> …

Exceptions:

� IntegerOverflowException

� IntegerUnderflowException

� <etc> …

10/22/2015 19
Secure Coding Frameworks

Mainstream Programming Language

Vulnerability vs. SCF Remedy Tactic …

Vulnerability:

� Silent Integer Overflow /
Underflow in Math Ops

� Silent Floating Point Floor /
Ceiling in Math Ops

� Silent Loss of Sign / Magnitude
/ Precision in Narrowing Implicit
/ Explicit Type Conversions

Remedy Tactic:

� Exception Thrown / Handling for
Integer Overflow / Underflow

� Exception Thrown / Handling for
Floating Point Floor / Ceiling

� Exception Thrown / Handling for
Loss of Sign / Magnitude /
Precision in Narrowing Explicit
Type Conversion

� No Implicit Type Conversions

10/22/2015 20
Secure Coding Frameworks

Mainstream Programming Language

Vulnerability vs. SCF Remedy Tactic …

Vulnerability:

� Uninitialized Memory

�Memory Leaks

� Arbitrary Code Execution

� Stack Overflow/Overrun

� Heap Overflow/Overrun

� Null Pointer Dereferencing

� Dangling Pointers

Remedy Tactics:

� Constructor(s) Initialization

� Destructor/Finally/Other
Deallocation

� Array Index Checking

� Array Index Checking

� No Pointers/No Primitives

� No Pointers/No Primitives

� No Pointers/No Primitives

10/22/2015 21
Secure Coding Frameworks

Mainstream Programming Language

Vulnerability vs. SCF Remedy Tactic …

� Invalid Parameter Inputs

� Direct Filename References *

� Direct Database References

� Network Functions *

� SQL Injection *

� URL Injection

� HTTP Injection

� LDAP Injection

� Cross-Site Scripting

� Cross-Site Request Forgery

� User-Defined Range Constraint

� Text Filters/Filename String Class

� Text Filters/Database String Class

� Network SSL Functions

� Text Filters/SQL String Class

� Text Filters/URL String Class

� Text Filters/HTTP String Class

� Text Filters/LDAP String Class

� Text Filters/XSS String Class

� Text Filters/HTTP String Class

10/22/2015 22
Secure Coding Frameworks

Mainstream Programming Language Gap vs.

SCF New Feature …

Gaps:
� Vulnerable Primitives and
Operators

� Lack of User-Defined Range
Constraints on Primitive Values

� Lack of Character Filters on
Strings & String Derivatives

� Limitations on Long Integer
Values

� Limitations on Double Values
� No Type for Currency
� No Instrumentation

New Features:
� Secure Classes and Methods
replace Vulnerable Primitives and
Operators

� Exception Handling for User-
Defined Range Constraints

� Exception Handling for Violations
of Character Filters on Strings

� BigInteger Class with No Limits
� BigDouble Class with No Limits
� Big Decimal Class
� Exception Handling-based
Instrumentation Hooks

10/22/2015 23
Secure Coding Frameworks

Exception Handling and

Instrumentation Hooks …

� Trigger Alerts

� Trigger Error Messages

� Trigger Event Log

� Trigger E-Mail

� Trigger IPC Message

� Identify Programmer Errors

� Feedback to Software Vendor

� Support Application Monitoring

� Support Application Monitoring
in the Cloud

� Support Application Monitoring
across the Enterprise

� Situational Awareness across
Product Deployment Area

� Identify Malicious Behavior

� Automated Real-Time Bug
Reporting and Patch
Management

10/22/2015 24
Secure Coding Frameworks

Intellectual Property …

� Cyber security thru Lexical
and Symbolic Proxy (CLaSP)

� Encapsulates and Substitutes
Lexical Elements (private
primitives) with Safe Classes

� Encapsulates and Substitutes
Symbolic Elements (public
operators) with Safe Methods

� Applies only to Object-Oriented
(OO) Programming Languages

� CLaSP is the patentable idea
that defines the entire process
of transforming any general
purpose OO programming
language (with inherent cyber
security vulnerabilities) into a
safe, secure and reliable coding
platform.

� Security is the #1 priority
software quality attribute of the
Secure Coding Framework.

� USPO patent is pending.

10/22/2015 25
Secure Coding Frameworks

Benefits of SCF …

� Assures safe, secure and
reliable source code in area
of addressed vulnerabilities

� Reduces/eliminates the need
for static analysis in area of
addressed vulnerabilities

� Easy integration of new SCF
code with legacy code

� No need to learn a new
programming language

� Easy to learn

� Class and method naming
conventions that echo that of
the primitives and operators

� SCF source code baseline
that conforms to the SEI
Secure Coding Standard

� Supports SEI Secure Coding
Standards for new
development

10/22/2015 26
Secure Coding Frameworks

SCF Software Architecture

10/22/2015 27
Secure Coding Frameworks

