
University of Southern California

Center for Systems and Software Engineering

Maintainability Index Variation Among PHP,
Java, and Python Open Source Projects

Celia Chen1, Lin Shi2, Kamonphop Srisopha1

1 Computer Science Department, USC
2 Laboratory for Internet Software Technologies, ISCAS

University of Southern California

Center for Systems and Software Engineering

Agenda

Motivation

Maintainability Index

Research Question

Data Collection

Results

Conclusion

Future Work

University of Southern California

Center for Systems and Software Engineering

Motivation

• Open Source Projects
– Global Distributed Collaboration

– Voluntarily

• Low maintainability

Difficult to modify Increase the participation cost

Difficult to find solutions for bugs Increase the maintainability effort

University of Southern California

Center for Systems and Software Engineering

Motivation

• Open Source Projects
– Global Distributed Collaboration

– Voluntarily

• Low maintainability

Difficult to modify Increase the participation cost

Difficult to find solutions for bugs Increase the maintainability effort

A successful OSS project requires to be
highly maintainable

University of Southern California

Center for Systems and Software Engineering

Why Programming Languages？？？？

“C makes it easy to shoot yourself in the foot;

C++ makes it harder, but when you do it blows

your whole leg off.” — Bjarne Stroustrup

• Impact of the language choice is significant

• “like choosing a wife“ — Barry W. Boehm

• Impact on design, development, later maintenance phases

Our goal: investigate the impact of programming language on

maintainability

University of Southern California

Center for Systems and Software Engineering

Maintainability

● “The ease in which a system can be modified or extended”

● Maintainability Index (MI)

○ An index that represents the ease of maintaining the code

○ Widely used in the industry

University of Southern California

Center for Systems and Software Engineering

Maintainability Index

Halstead Volume (HV) Cyclomatic complexity (CC)

Count of lines (LLOC) Percent of lines of comments (CM)

MI is developed by the University of Idaho in 1991 by Oman and Hagemeister

University of Southern California

Center for Systems and Software Engineering

Halstead Volume

According to Halstead, a computer program is an

implementation of an algorithm considered to be a collection of

tokens which can be classified as either operators or operands.

Operators include:

Reserved words (while, if, do, class, etc)
Qualifier (const, static)
expressions and arithmetic operators (+, >,=)
etc.

Operand includes:

numeric constant
literal
identifiers
etc.

n1 = number of distinct operator

n2 = number of distinct operands

N1 = Total number of occurrences of operators

N2 = Total number of occurrences of operands

Program Length: N = N1 + N2

Vocabulary Size: n = n1 + n2

Program Volume = N * log2(n)

University of Southern California

Center for Systems and Software Engineering

\

McCabe’s Cyclomatic Complexity

Cyclomatic Complexity aims to capture the complexity of a code
function/method in a single number. The metric develops a Control
Flow graph that measures the number of linearly independent
paths through a program module*

E = number of edges

N = number of nodes

P = number of module/ connected

function/method.

CC = E - N + 2 x P

*http://www.tutorialspoint.com/software_testing_dictionary/cyclomatic_complexity.htm

University of Southern California

Center for Systems and Software Engineering

\

McCabe’s Cyclomatic Complexity

Cyclomatic Complexity aims to capture the complexity of a code
function/method in a single number. The metric develops a Control
Flow graph that measures the number of linearly independent
paths through a program module*

E = number of edges

N = number of nodes

P = number of module/ connected

function/method.

CC = E - N + 2 x P

*http://www.tutorialspoint.com/software_testing_dictionary/cyclomatic_complexity.htm

CC = 8 - 7 + (2 * 1) = 3

University of Southern California

Center for Systems and Software Engineering

Logical Line of Code

Physical Line of Code

Logical Line of Code

Comment

Logical Line of
Code attempts to

measure the number

of executable

expression/

statements

University of Southern California

Center for Systems and Software Engineering

Logical Line of Code

Physical Line of Code 13

Logical Line of Code 6

Comment 3

Logical Line of
Code attempts to

measure the number

of executable

expression/

statements

University of Southern California

Center for Systems and Software Engineering

First Research Question

How does MI vary among Java, PHP, and Python open source
projects?

Language Hypothesis Null Hypothesis

MI does not vary
significantly across
PHP, Java and
Python OSS projects.

For PHP, Java and
Python OSS projects,
MI varies
significantly.

University of Southern California

Center for Systems and Software Engineering

Second Research Question

Does MI vary among various domains for these open source projects?

If yes, does language choice affect MI within each domain?

Domain Hypothesis Null Hypothesis

MI does not vary
significantly across
different software
development domains

For different software
development domains, MI
of PHP, Java and Python
OSS projects varies
significantly

University of Southern California

Center for Systems and Software Engineering

Data Collection

Has more than
one official
release

The latest
stable release

Has well-
established
sizing

Has fully
accessible
source code

well-presented
in the

community

Selecting Criterion

University of Southern California

Center for Systems and Software Engineering

Characteristics of project data sources

Language Average LLOC Metrics Collection Tools

PHP 18643 Phpmetrics

Java 33871 CodePro, LocMetrics

Python 6644 Radon

University of Southern California

Center for Systems and Software Engineering

Characteristics of project domains

* Excluding test, doc, example, tutorial folders

University of Southern California

Center for Systems and Software Engineering

Classification on number of projects by LLOC
in each domain

University of Southern California

Center for Systems and Software Engineering

Results – RQ1

One-way ANOVA Results for language analysis

● P-Value <0.1 (Strongly suggestive)

● MI differs across the three languages at 90% confidence level

● Reject Null Hypothesis

University of Southern California

Center for Systems and Software Engineering

Maintainability Index without comment (MIWOC)

University of Southern California

Center for Systems and Software Engineering

Maintainability Index with comment (MIWC)

University of Southern California

Center for Systems and Software Engineering

Maintainability Index = MIWOC + MIWC

University of Southern California

Center for Systems and Software Engineering

Results – RQ2

One-way ANOVA for domains

• P-Value <0.05 (Definitive)
• MI differs across the five domains at 95% confidence level
• Reject Null Hypothesis

University of Southern California

Center for Systems and Software Engineering

MI Variation among domains

• Web Development Framework has shown the highest medians and the highest maximum
value.

• Audio and Video has both the lowest maximum value and the lowest median value

University of Southern California

Center for Systems and Software Engineering

Average MI for each Language

• PHP may be a good option for
projects that desires higher

maintainability within Web
Development Framework,

Security/Cryptography and
Audio and Video domain,

• Python may be a good option
for System Administrative

Software

• Java for Software Testing

Tools.

University of Southern California

Center for Systems and Software Engineering

Maintainability Index — To be Improved

• Maintainability Index only consider Code Quality (Halstead

Volume, Cyclomatic complexity), Size (Count of lines), and

Comments Ratio as indicators.

• To comprehensively and accurately indicate the ease to maintain

for OSS, there are more aspects need to be considered:

For example:

Code Structure: Cohesion & Coupling

Application Clarity

Documentation Quality

Community Support

University of Southern California

Center for Systems and Software Engineering

Conclusion

• Based on a dataset of 97 open source projects,

– Employed one-way ANOVA to investigate

• How MI differs across Java, PHP and Python OSS
projects

• How MI differs across 5 software domains.

– A reference to average OSS developers with more
awareness that the potential options on Languages in terms
of maintainability

University of Southern California

Center for Systems and Software Engineering

Future Works

• Other languages, e.g., C/C++, Ruby, JavaScript, etc.

• More language specific factors

– e.g. programming types, semantics, etc.

• The relationships between maintainability and other

OSS quality attributes

– e.g. how does the maintainability impact on reliability of OSS
projects?

