

Maintainability Index Variation Among PHP, Java, and Python Open Source Projects

Celia Chen¹, Lin Shi², Kamonphop Srisopha¹ ¹ Computer Science Department, USC ² Laboratory for Internet Software Technologies, ISCAS

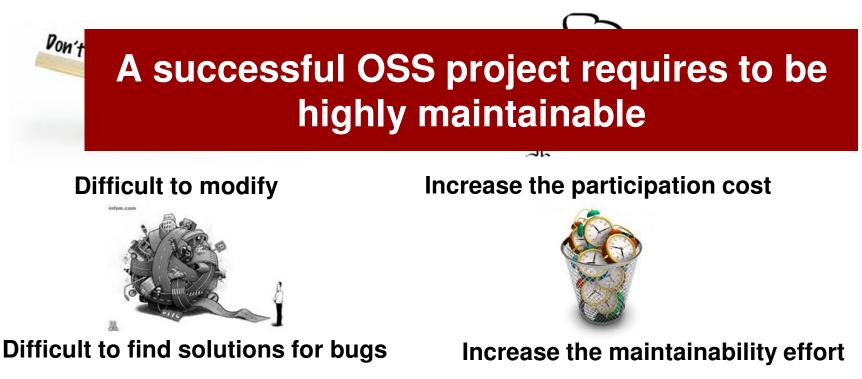
Motivation

- Open Source Projects
 - Global Distributed Collaboration
 - Voluntarily
- Low maintainability

Difficult to modify

Difficult to find solutions for bugs

Increase the participation cost


Increase the maintainability effort

Motivation

- Open Source Projects
 - Global Distributed Collaboration
 - Voluntarily
- Low maintainability

Why Programming Languages?

"C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you do it blows your whole leg off." — Bjarne Stroustrup

- Impact of the language choice is significant
 - "like choosing a wife" Barry W. Boehm
 - Impact on design, development, later maintenance phases

Our goal: investigate the impact of programming language on maintainability

Maintainability

- "The ease in which a system can be modified or extended"
- Maintainability Index (MI)
 - An index that represents the ease of maintaining the code
 - Widely used in the industry

Static analysis tool for PHP

Maintainability Index

 $MIwoc_{(sourcefile)} = 171 - 5.2 * \ln HV - 0.23 * CC - 16.2 * \ln LLOC$

 $MIwc_{(sourcefile)} = 50 * sin\sqrt{2.46 * CM}$

 $MI_{(sourcefile)} = MIwoc_{(sourcefile)} + MIwc_{(sourcefile)}$

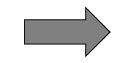
 $MI = \frac{\sum MI_{(sourcefile)}}{Number of Source files}$

Halstead Volume (HV) Count of lines (LLOC) Cyclomatic complexity (CC) Percent of lines of comments (CM)

MI is developed by the University of Idaho in 1991 by Oman and Hagemeister

Halstead Volume

According to Halstead, a computer program is an implementation of an algorithm considered to be a collection of tokens which can be classified as either operators or operands.

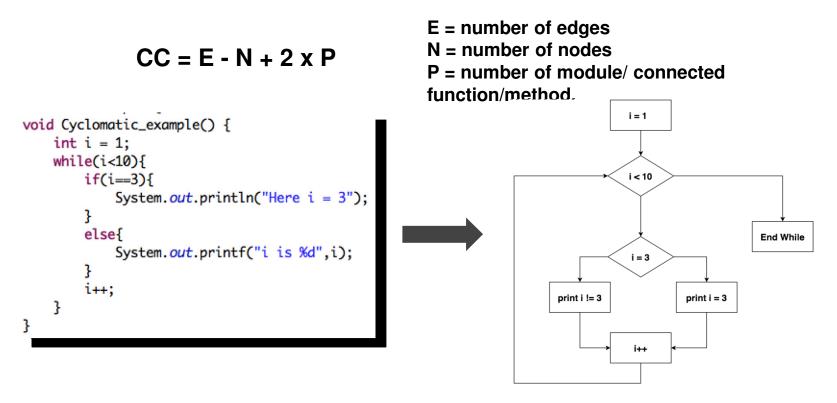

Operators include:

Reserved words (while, if, do, class, etc) Qualifier (const, static) expressions and arithmetic operators (+, >,=) etc.

Operand includes:

numeric constant literal identifiers etc.

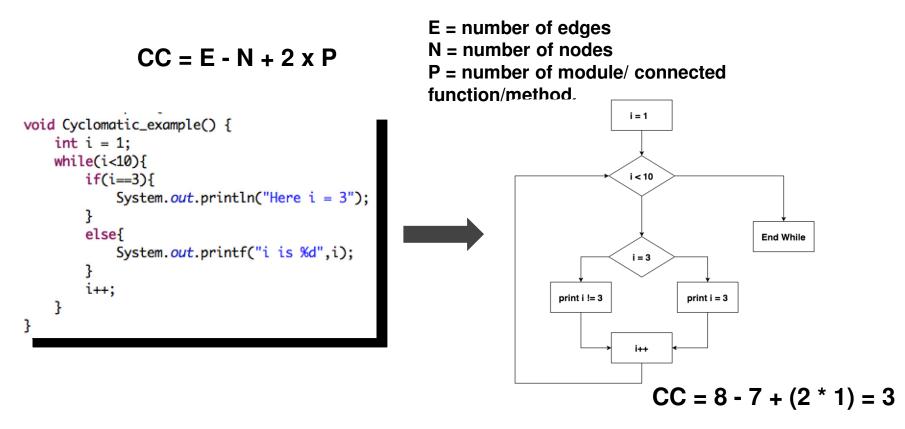
n1 = number of distinct operator
n2 = number of distinct operands
N1 = Total number of occurrences of operators
N2 = Total number of occurrences of operands


Program Length: N = N1 + N2Vocabulary Size: n = n1 + n2

Program Volume = N * log₂(n)

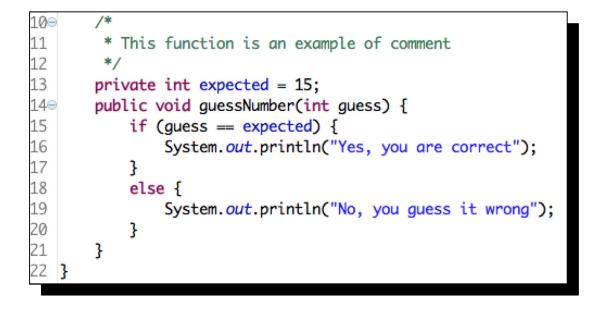
McCabe's Cyclomatic Complexity

Cyclomatic Complexity aims to capture the complexity of a code function/method in a single number. The metric develops a Control Flow graph that measures the number of linearly independent paths through a program module*



*http://www.tutorialspoint.com/software_testing_dictionary/cyclomatic_complexity.htm

McCabe's Cyclomatic Complexity

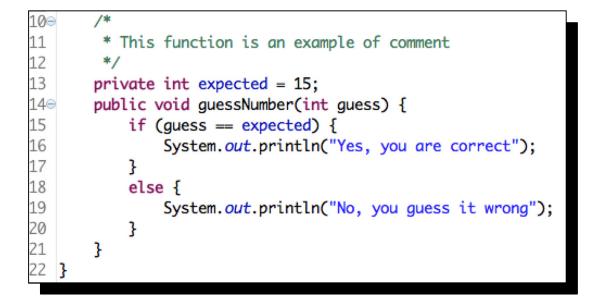

Cyclomatic Complexity aims to capture the complexity of a code function/method in a single number. The metric develops a Control Flow graph that measures the number of linearly independent paths through a program module*

*http://www.tutorialspoint.com/software_testing_dictionary/cyclomatic_complexity.htm

Logical Line of Code

Logical Line of Code attempts to

measure the number of executable expression/ statements


Physical Line of Code

Logical Line of Code

Comment

Logical Line of Code

Logical Line of Code attempts to

measure the number of executable expression/ statements

Physical Line of Code	13
Logical Line of Code	6
Comment	3

First Research Question

How does MI vary among Java, PHP, and Python open source projects?

Language Hypothesis

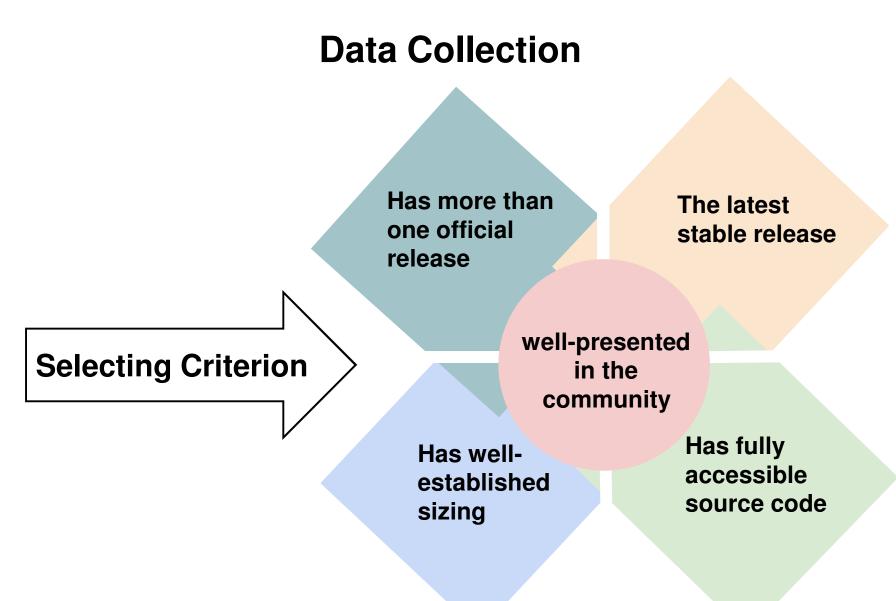
For PHP, Java and Python OSS projects, MI varies significantly.

Null Hypothesis

MI does not vary significantly across PHP, Java and Python OSS projects.

Second Research Question

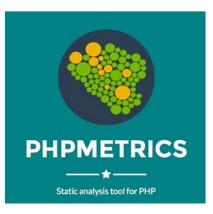
Does MI vary among various domains for these open source projects? If yes, does language choice affect MI within each domain?


Domain Hypothesis

For different software development domains, MI of PHP, Java and Python OSS projects varies significantly

Null Hypothesis

MI does not vary significantly across different software development domains



Characteristics of project data sources

Language	Average LLOC	Metrics Collection Tools
PHP	18643	Phpmetrics
Java	33871	CodePro, LocMetrics
Python	6644	Radon

* * * L * L * L *	the second second		
.cpp;.cc;*.h;*.hpp;*.inl;*.cs	;;*.java;*.sqi		
ource Code Directory			
C:\jEdit4.3			Browse
utput Directory (optional)			
			Browse
			Count LOC
			COURCOC
			locmetrics.com
Progress			locmetrics.com
	537	C&SLOC, Code & Comment	locmetrics.com
Source Files	537 91	C&SLOC, Code & Comment CLOC, Comment Lines	4390
Source Files Directories			4390 45924
Progress Source Files Directories LOC, Lines of Code BLOC, Blank Lines	91	CLOC, Comment Lines	4390 45924 254385
Source Files Directories LOC, Lines of Code	91 168872 19446	CLOC, Comment Lines CWORD, Comment Words	4390 45924 254385
Directories LOC, Lines of Code BLOC, Blank Lines	91 168872 19446 103502	CLOC, Comment Lines CWORD, Comment Words HCLOC, Header Comments	4390 45924 254385 10584

Characteristics of project domains

Domain	Numb	per of Pr	Average LLOC	
Domain	Php	Java	Python	Average LLOC
Web Development Framework	8	8	8	45536
System Administration Software	6	6	6	12070
Software Testing Tools	6	6	7	12948
Security/Cryptography	6	6	6	4730
Audio and Video	6	6	6	14358

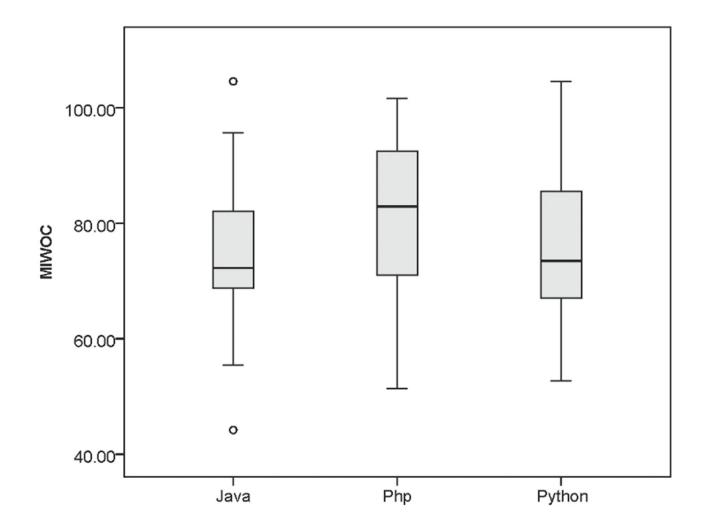
* Excluding test, doc, example, tutorial folders

Classification on number of projects by LLOC in each domain

Category	[1,1000]	[1000,5000]	[5001,10000]	>10,000	
Web Development	0	2	4	18	
Framework	0	2	7	10	
System Administration	6	4	3	5	
Software	0	4	5	5	
Software Testing	2	9	5	3	
Tools	2	3	5	5	
Security	7	6	4	1	
Audio and Video	2	4	3	9	

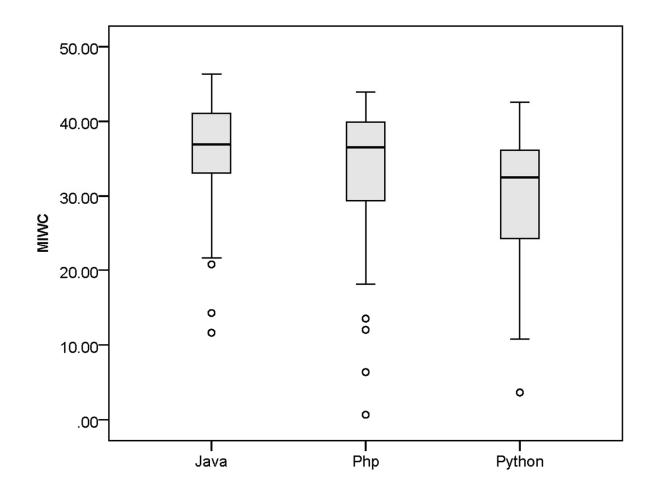
Results – RQ1

One-way ANOVA Results for language analysis

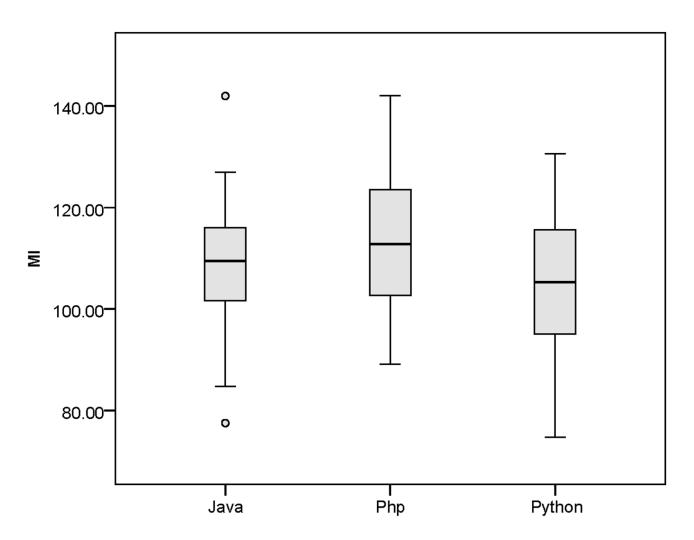

ANOVA						
		Sum of	df	Mean	F	Sig.
		Squares		Square		
	Between Groups	844.599	2	422.299	2.544	0.084
MIwoc	Within Groups	15602.788	94	165.987		
	Total	16447.386	96			
	Between Groups	589.095	2	294.548	3.069	0.051
MIwc	Within Groups	9022.420	94	95.983		
	Total	9611.516	96			
	Between Groups	1044.871	2	522.435	2.614	0.079
MI	Within Groups	18783.525	94	199.825		
	Total	19828.395	96			

• P-Value <0.1 (Strongly suggestive)

- MI differs across the three languages at 90% confidence level
- Reject Null Hypothesis



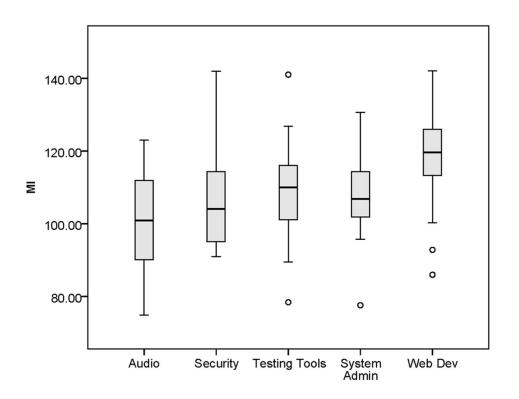
Maintainability Index without comment (MIWOC)



Maintainability Index with comment (MIWC)

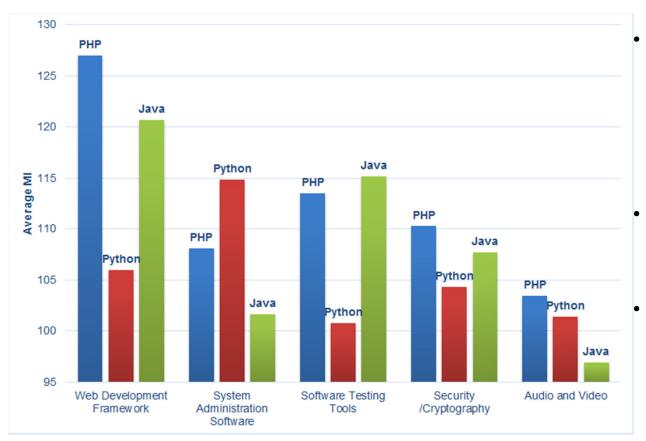
Maintainability Index = MIWOC + MIWC

Results – RQ2


One-way ANOVA for domains

ANOVA						
		Sum of	df	Mean	F	Sig.
		Squares		Square		
	Between Groups	1541.295	4	385.324	2.378	0.057
MIwoc	Within Groups	14906.092	92	162.023		
	Total	16447.386	96			
	Between Groups	741.498	4	185.374	1.923	0.113
MIwc	Within Groups	8870.018	92	96.413		
	Total	9611.516	96			
	Between Groups	3221.732	4	805.433	4.462	0.002
MI	Within Groups	16606.663	92	180.507		
	Total	19828.395	96			

- P-Value <0.05 (Definitive)
 - MI differs across the five domains at 95% confidence level
 - Reject Null Hypothesis


MI Variation among domains

- Web Development Framework has shown the highest medians and the highest maximum value.
- Audio and Video has both the lowest maximum value and the lowest median value

Average MI for each Language

PHP may be a good option for projects that desires higher maintainability within Web Development Framework, Security/Cryptography and Audio and Video domain,

Python may be a good option for System Administrative Software

Java for Software Testing Tools.

Maintainability Index — To be Improved

- Maintainability Index only consider Code Quality (Halstead Volume, Cyclomatic complexity), Size (Count of lines), and Comments Ratio as indicators.
- To comprehensively and accurately indicate the ease to maintain for OSS, there are more aspects need to be considered:

Conclusion

- Based on a dataset of 97 open source projects,
 - -Employed one-way ANOVA to investigate
 - How MI differs across Java, PHP and Python OSS projects
 - How MI differs across 5 software domains.
 - A reference to average OSS developers with more awareness that the potential options on Languages in terms of maintainability

Future Works

- Other languages, e.g., C/C++, Ruby, JavaScript, etc.
- More language specific factors
 - e.g. programming types, semantics, etc.
- The relationships between maintainability and other OSS quality attributes
 - e.g. how does the maintainability impact on reliability of OSS projects?