Agile is a Quality Anti-Pattern
(and what you should do about it)

|. Introduction
Il. Problem Definition

Ill. Proposed Solution

© 2015 ClearSpecs Enterprises 1

Disabusings

| like Agile — It is a powerful framework for dealing
with (portions of) the software development challenge.

Most things have strengths and weaknesses —
Agile is no exception.

© 2015 ClearSpecs Enterprises

Introduction -- Quality attributes

There are over 50 software quality attributes including
survivability, safety, and robustness.

Each quality attribute has over 20 characteristics
including priority, conflicting qualities, supporting qualities,
and achievement and verification tactics.

This is true across all applications and all domains.

© 2015 ClearSpecs Enterprises 3

Attribute examples -- 1 of 2

=-[2) Essential quality group = 2} Facilitation quality group

=) COMPLIANCE subgroup) Ease of configuring & operating

) Laws and regulations - _) Ease of deploying, updating, & uninstalling
[} Design and coding standards --_) Ease of learning

- [2) Verification guidelines =) Ease of use

-} Domain Sufficiency) Error resistance

-) Understandability ~[0) Ease of access1
=2} Clarity) Ease of access2

-3 Necessity =-_) Ease of managing
[} Restricted Comm Paths =- ") Ease of auditing
=) Simplicity -7} Ease of monitoring
] Consistency
_) Domain alignment
= [2) MODULARITY subgroup
2] Cohesion
[} Coupling
= _) VERIFIABILITY subgroup
- [) Testability
~[2) Reviewability
21 Analyzability
~[2) Measurability

© 2015 ClearSpecs Enterprises

Attribute examples -- 2 of 2

=-[Z) Behavior quality group = [2) Durability quality group

E J COMPATIBILITY subgroup =2} REVISABILITY subgroup
[Co-existence -~ [Debuggability
- L) Interoperability ~_} Interversion compatibility
=[] Safety - ~[J) Modifiability

=) Dependability = [Z) ADAPTABILITY subgroup

=[] Availability -2} Internationalizability

=) Reliability =-_) Portability
E ~} Correctness =2} Component reusability
- ~[2) Accuracy -2} Extensibility

-2} Precision ~[2) Scalability

[} Data integrity
= =) Robustness

7]} Resilience
~|Z) Recoverability
=2} PERFORMANCE subgroup
-2} Capacity
- [Z) Efficiency
-2} Response Time
~|Z) Throughput
=- 2} SECURITY subgroup
-2} Survivability
- [Z) Privacy
~|Z) Resource security

© 2015 ClearSpecs Enterprises

Characteristic examples -- 1 of 3

Definition Degree to which system effectively performs requested functions under all conditions

Software subfield reliability engineering

Assumptions/Rationale

Indicators [measures of supporting and directly supported attributes]
Measures Mean time to failure (trailing), Mean time between failures (trailing). Failure rate (trailing)
Aspect of availability, modifiability

Supporting qualities correctness, data integrity

Associated with Robustness, Recoverability, Modifiability, Component reusability

Conflicting qualities performance, many adaptation qualities

Threats Defective code or data, hardware failure, excessive customization
Mitigations Formal review, data analysis, thorough testing, reliability measures tracking

Additional supports
. Monitor and control system states and data integrity (e.g. output)
. Specialized interfaces
Comprehensive exception handling
Maximize reuse of reliable components

© 2015 ClearSpecs Enterprises

Characteristic examples -- 2 of 3

Constraints Design and coding standards that limit complexity, verification guidelines requiring

technical reviews, measurement, analysis, and comprehensive usage, code, and data test coverage as
well as exploratory testing

Verification tactics review standards compliance, review and test code including exception handlers,
analyze data, measure and track mean time to failure, vernfy all supporting qualities

Elicitation Questions
Which system aspects threaten reliability
What is acceptable reliability
Which functions require ultra-high reliability
How will unreliability of inhouse and third-party software be detected and
communicated
How to handle unreliable external systems

References
The Quest for Software Requirements -- section 5.5

Software Reliability Engineering

Automated Source Code Reliability Measure OMG/CISQ

© 2015 ClearSpecs Enterprises

Characteristic examples -- 3 of 3

Risk Factors
a. Developer understanding = [superficial, limited, deep]

b. Cost (implementation, verification, maintenance) = [high, medium, low]
c. Feasibility (technical, cost, understanding) = [low, medium, high]

Other Characteristics
a. Sources/Parents:

b. Type = behavior quality

c. Design scope = crosscutting [local, crosscutting]

d. Priority = [essential, necessary, desirable]
f. Version =

g. Assignment:

h. Architecture-relevant = yes [yes, maybe, no]

STATES

a. Goal states are < @Unverfied, Verified, Impl, Inactive=

© 2015 ClearSpecs Enterprises

Quality goals are poorly understood

Required quality attributes (quality goals) are difficult to achieve
and verify.

Most developers (and their managers) have little understanding of
how to do either.

Developers understand testing, but not verification. Unfortunately,
testing alone is inadequate for the verification of many quality
goals. Quality verification may entail analysis, technical review,
and measurement, as well as four modes of testing.

© 2015 ClearSpecs Enterprises 9

Agile

Aqile is a set of values and principles for software
development. It is not a development methodology.

Agile methodologies embody Agile values and principles.
All Agile methodologies entalil iterative, incremental

development, driven by customers and evolving
understanding i.e. change.

© 2015 ClearSpecs Enterprises 10

Which Agile methodology?

There are
1. Named e.g. Scrum and XP
2. Pure-hybrid i.e. blend of 2 or more named methodologies

3. Mixed-hybrid i.e. blend of 1 or more named methodologies and
non-Agile practices (e.g. defining quality goals up-front)
l.e. calling whatever you are doing “Agile”

Each type has two forms:
1. Written about i.e. Specified Agile (S-Agile)
2. Actually used i.e. Actual Agile (A-Agile)

Agile is a Quality Anti-Pattern
named or pure-hybrid S-Agile is a Quality Anti-Pattern

© 2015 ClearSpecs Enterprises

Problem Definition -- Agile methodologies over-simplify

For every complex problem
there is an answer that is
clear, simple, and wrong.

‘]W)”r’? H. L. Mencken

——

|deas should be made

as simple as possible

-- but no simpler.
paraphrasing A. Einstein

© 2015 ClearSpecs Enterprises 12

Agile’s 4 problematic principles --1/2

Welcome changing requirements, even late in development.

The impact of late changing requirements is NOT uniform. Since some quality goal
supports are crosscutting e.g. exception handlers, if they are discovered or change late in
development, achieving them may be infeasible or very expensive.

The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

Sometimes, discussion alone is neither efficient nor effective. Larger scope topics such as
safety achievement and verification strategies, must be recorded, analyzed, and then
discussed. There are too many scattered elements to enable discussion alone to provide
confidence in the assessment of either strategy.

© 2015 ClearSpecs Enterprises 13

Agile’s 4 problematic principles -- 2/2

Working software is the primary measure of progress

The achievement of many quality goals is hard to assess except by verifying the entire
application (e.g. when is safety working?)

Agile’s “working software” often includes a lot of reckless short-term technical debt due
to missing quality supports. Therefore, working software is not a measure, but an
indicator, of progress. A thermometer measures temperature. The sweat on my brow
indicates temperature.

The best architectures, requirements, and designs emerge
from self-organizing teams
Quality goals don’t need to emerge. They can be selected at the beginning of a project

from a rich attributes model. Emergence is great, when experience and understanding
are lacking. It is ineffective and expensive, when the choices are known.

© 2015 ClearSpecs Enterprises 14

Agile quality — what does it mean?

Scrum — the most popular methodology — provides no guidance on quality goals

Extreme Programming (XP) practices include:

pair programming and thorough code review and unit testing of all code
test-first development i.e. planning and writing tests before each increment
automated testing

coding standards — 2/3 not doing in 2010

simple design

refactoring

XP practices:

focus on clean, understandable, and effective code thus supporting acceptable
functionality, reliability, and understandability i.e. focus on 3 of over 50 attributes

provide necessary, but insufficient support for most other attributes

© 2015 ClearSpecs Enterprises 15

Agile’s bottom-up functional bias

 Discourages specifications because code and tests are considered satisfactory
» Discourages up-front analysis and design for fear of waste, including gold-plating
 No specification or analysis of quality threats and (achievement and verification) strategies
« Focus on testing, rather than verification
« Emphasis on incremental design, which is very inefficient for crosscutting quality supports
« No mention of

* risk management

* resolving quality conflicts

 designing crosscutting quality supports

© 2015 ClearSpecs Enterprises 16

Functional bias is natural: customers want functionality

i‘(' |
i Eg [

Domain Functions '8

© 2015 ClearSpecs Enterprises 17

Developers (& their managers) neglect foundations

When a wall cracks (insufficient
footings) in your home or your
basement floods (insufficient drainage
or waterproofing), you understand the
need for a solid foundation.

When your system is hacked or
crashes under high volume, you
understand the need for a solid
foundation i.e. set of quality supports.

© 2015 ClearSpecs Enterprises 18

Agile is terrible at achieving most quality goals

, done well, at achieving functional goals and supporting three
quality attributes.

Agile methodologies at achieving and verifying the other 50 quality
goals, because:

1. Agile emphasizes functions and de-emphasizes most quality goals to the point of
invisibility.

2. Agile emphasizes testing and, except for code and tests, de-emphasizes technical
reviews, analysis, and measurement to the point of invisibility.

3. Nothing assures that all high-priority quality goals will emerge before product delivery.

© 2015 ClearSpecs Enterprises 19

Agile™ causes reckless short-term technical debt

i\ Input verification: e Safeguards o
o PRIHA N e Reguest validation + - Security guards ||
o Egpcetion(s)y o \0 o Exception handling -+ Encryption |
o N e logging e Testpoints
coseecgodetete reservation: N el
T R t
N

“Complete” functional components must contain quality support code
Late identification causes
Therefore, you should identify quality goals before functions

© 2015 ClearSpecs Enterprises 20

Proposed Solution -- Quality before functionality

Qualities

© 2015 ClearSpecs Enterprises 21

ldentifying quality goals first

Most quality goals can be accurately identified from knowledge
of the software’s operating environments and basic mission e.g.
flight control, internet gaming, or stock trading, and use of a rich
quality attributes model.

Early identifications may need to be adjusted as understanding
deepens, but there is no way to predict when you have enough
information to accurately determine a quality goal without
waiting until all functional code has been written.

Waiting is an expensive alternative to early identification.

© 2015 ClearSpecs Enterprises 22

Quality-Aware Agile

Quality-Aware development is NOT a development methodology, but
a 3-part supplement to whatever you are doing now or intend to do

It begins with a quality sprint in which you identify quality goals their
levels, priorities, challenges, mitigations, supports, achievement
strategies and verification strategies. You also acquire and verify a
library of crosscutting support components e.g. exception handlers.
Using a rich quality attributes model, it should take less than a week
to draft a quality goals model.

In each iteration, you reassess and carry out the quality strategies.

Finally, you collect the quality lessons during a project retrospective
and record them in the enterprise model of quality attributes and/or in
the development standards.

© 2015 ClearSpecs Enterprises 23

Voluntary ignorance

Voluntary ignorance is choosing NOT to acquire readily-available product
requirements, implementation, and verification information in a timely manner.

Readily available means the information can be acquired “quickly” i.e.
between one hour and one week.

Timely manner means that delay causes significant short-term technical debt.
Waiting for quality attribute requirements to emerge or reach the top of the

backlog rather than using Quality-Aware Agile is an example of voluntary
ignorance.

Replace voluntary ignorance with timely understanding

© 2015 ClearSpecs Enterprises 24

Wrap up

Big Requirements Up-Front (BRUF) is an Agile anti-pattern,
because BRUF is inconsistent with evolving understanding (of
desired functionality) caused by incremental development

We recommend Big Quality Requirements Up-Front (BQRUF)
l.e. a mixed-hybrid strategy, because understanding of quality
goals should not evolve much. Failure to practice BQRUF
always results in significant short-term technical debit.

© 2015 ClearSpecs Enterprises 25

An Offer

If you have an early stage project,

are interested in trying a “quality sprint”, and
would like an expenses-only week of guidance,
let me know.

© 2015 ClearSpecs Enterprises

Questions or Comments

© 2015 ClearSpecs Enterprises 27

