
Agile is a Quality AntiAgile is a Quality AntiAgile is a Quality AntiAgile is a Quality Anti----PatternPatternPatternPattern
(and what you should do about it(and what you should do about it(and what you should do about it(and what you should do about it))))

© 2015 ClearSpecs Enterprises 1

David Gelperin, CTO

ClearSpecs Enterprises

I. Introduction

II. Problem Definition

III. Proposed Solution

DisabusingsDisabusingsDisabusingsDisabusings

© 2015 ClearSpecs Enterprises 2

I like Agile – It is a powerful framework for dealing

with (portions of) the software development challenge.

Most things have strengths and weaknesses –

Agile is no exception.

IntroductionIntroductionIntroductionIntroduction -------- Quality Quality Quality Quality attributesattributesattributesattributes

© 2015 ClearSpecs Enterprises 3

There are over 50 software quality attributes including

survivability, safety, and robustness.

Each quality attribute has over 20 characteristics
including priority, conflicting qualities, supporting qualities,
and achievement and verification tactics.

This is true across all applications and all domains.

Attribute examples Attribute examples Attribute examples Attribute examples -------- 1 of 21 of 21 of 21 of 2

© 2015 ClearSpecs Enterprises 4

Attribute examples Attribute examples Attribute examples Attribute examples -------- 2 of 22 of 22 of 22 of 2

© 2015 ClearSpecs Enterprises 5

Characteristic examples Characteristic examples Characteristic examples Characteristic examples -------- 1 of 31 of 31 of 31 of 3

© 2015 ClearSpecs Enterprises 6

Characteristic examples Characteristic examples Characteristic examples Characteristic examples -------- 2 of 32 of 32 of 32 of 3

© 2015 ClearSpecs Enterprises 7

Characteristic examples Characteristic examples Characteristic examples Characteristic examples -------- 3 of 33 of 33 of 33 of 3

© 2015 ClearSpecs Enterprises 8

QQQQuality goals are poorly understooduality goals are poorly understooduality goals are poorly understooduality goals are poorly understood

© 2015 ClearSpecs Enterprises 9

Required quality attributes (quality goals) are difficult to achieve

and verify.

Most developers (and their managers) have little understanding of
how to do either.

Developers understand testing, but not verification. Unfortunately,
testing alone is inadequate for the verification of many quality

goals. Quality verification may entail analysis, technical review,
and measurement, as well as four modes of testing.

AgileAgileAgileAgile

© 2015 ClearSpecs Enterprises 10

Agile is a set of values and principles for software

development. It is not a development methodology.

Agile methodologies embody Agile values and principles.

All Agile methodologies entail iterative, incremental
development, driven by customers and evolving
understanding i.e. change.

Which Agile methodology?Which Agile methodology?Which Agile methodology?Which Agile methodology?

© 2015 ClearSpecs Enterprises 11

There are 4 types of Agile methodologies

1. Named e.g. Scrum and XP

2. Pure-hybrid i.e. blend of 2 or more named methodologies

3. Mixed-hybrid i.e. blend of 1 or more named methodologies and
non-Agile practices (e.g. defining quality goals up-front)

4. Relabeled i.e. calling whatever you are doing “Agile”

Each type has two forms:

1. Written about i.e. Specified Agile (S-Agile)

2. Actually used i.e. Actual Agile (A-Agile)

Agile is a Quality Anti-Pattern means

named or pure-hybrid S-Agile is a Quality Anti-Pattern

Problem Problem Problem Problem Definition Definition Definition Definition -------- Agile methodologies overAgile methodologies overAgile methodologies overAgile methodologies over----simplifysimplifysimplifysimplify

© 2015 ClearSpecs Enterprises 12

For every complex problem

there is an answer that is
clear, simple, and wrong.

H. L. Mencken

Ideas should be made

as simple as possible
-- but no simpler.

paraphrasing A. Einstein

Agile’sAgile’sAgile’sAgile’s 4 problematic principles 4 problematic principles 4 problematic principles 4 problematic principles -------- 1/21/21/21/2

© 2015 ClearSpecs Enterprises 13

Welcome changing requirements, even late in development.

The impact of late changing requirements is NOT uniform. Since some quality goal
supports are crosscutting e.g. exception handlers, if they are discovered or change late in

development, achieving them may be infeasible or very expensive.

The most efficient and effective method of conveying information

to and within a development team is face-to-face conversation.

Sometimes, discussion alone is neither efficient nor effective. Larger scope topics such as

safety achievement and verification strategies, must be recorded, analyzed, and then

discussed. There are too many scattered elements to enable discussion alone to provide
confidence in the assessment of either strategy.

Agile’sAgile’sAgile’sAgile’s 4 problematic principles 4 problematic principles 4 problematic principles 4 problematic principles -------- 2/22/22/22/2

© 2015 ClearSpecs Enterprises 14

Working software is the primary measure of progress

The achievement of many quality goals is hard to assess except by verifying the entire
application (e.g. when is safety working?)

Agile’s “working software” often includes a lot of reckless short-term technical debt due
to missing quality supports. Therefore, working software is not a measure, but an

indicator, of progress. A thermometer measures temperature. The sweat on my brow

indicates temperature.

The best architectures, requirements, and designs emerge
from self-organizing teams

Quality goals don’t need to emerge. They can be selected at the beginning of a project

from a rich attributes model. Emergence is great, when experience and understanding

are lacking. It is ineffective and expensive, when the choices are known.

Agile quality Agile quality Agile quality Agile quality –––– what does it mean?what does it mean?what does it mean?what does it mean?

© 2015 ClearSpecs Enterprises 15

Scrum – the most popular methodology – provides no guidance on quality goals

Extreme Programming (XP) practices include:

• pair programming and thorough code review and unit testing of all code

• test-first development i.e. planning and writing tests before each increment

• automated testing

• coding standards – 2/3 not doing in 2010

• simple design

• refactoring

XP practices:

• focus on clean, understandable, and effective code thus supporting acceptable

functionality, reliability, and understandability i.e. focus on 3 of over 50 attributes

• provide necessary, but insufficient support for most other attributes

Agile’sAgile’sAgile’sAgile’s bottombottombottombottom----up functional biasup functional biasup functional biasup functional bias

© 2015 ClearSpecs Enterprises 16

• Discourages specifications because code and tests are considered satisfactory

• Discourages up-front analysis and design for fear of waste, including gold-plating

• No specification or analysis of quality threats and (achievement and verification) strategies

• Focus on testing, rather than verification

• Emphasis on incremental design, which is very inefficient for crosscutting quality supports

• No mention of

• risk management

• resolving quality conflicts

• designing crosscutting quality supports

© 2015 ClearSpecs Enterprises 17

Functional bias is natural: Functional bias is natural: Functional bias is natural: Functional bias is natural: ccccustomers want functionalityustomers want functionalityustomers want functionalityustomers want functionality

© 2015 ClearSpecs Enterprises 18

Developers Developers Developers Developers (& their managers) (& their managers) (& their managers) (& their managers) neglect foundationsneglect foundationsneglect foundationsneglect foundations

When a wall cracks (insufficient

footings) in your home or your
basement floods (insufficient drainage
or waterproofing), you understand the
need for a solid foundation.

When your system is hacked or
crashes under high volume, you
understand the need for a solid
foundation i.e. set of quality supports.

Agile is terrible at achieving most quality goalsAgile is terrible at achieving most quality goalsAgile is terrible at achieving most quality goalsAgile is terrible at achieving most quality goals

© 2015 ClearSpecs Enterprises 19

XP, done well, is wonderful at achieving functional goals and supporting three
quality attributes.

All Agile methodologies are terrible at achieving and verifying the other 50 quality
goals, because:

1. Agile emphasizes functions and de-emphasizes most quality goals to the point of

invisibility.

2. Agile emphasizes testing and, except for code and tests, de-emphasizes technical
reviews, analysis, and measurement to the point of invisibility.

3. Nothing assures that all high-priority quality goals will emerge before product delivery.

Functional

Requirements

i.e. behaviors

AgileAgileAgileAgile**** causes causes causes causes reckless shortreckless shortreckless shortreckless short----term term term term technical debttechnical debttechnical debttechnical debt

© 2015 ClearSpecs Enterprises 20

Functional

Requirements

i.e. behaviors

“Complete” functional components must contain quality support code

Late identification causes reckless short-term technical debt

Therefore, you should identify quality goals before functions

Domain

Function(s)

e.g. delete reservation

• Input verification

• Request validation

• Exception handling

• Logging

et. al.

• Safeguards

• Security guards

• Encryption

• Testpoints

© 2015 ClearSpecs Enterprises 21

Proposed Solution Proposed Solution Proposed Solution Proposed Solution -------- Quality before functionalityQuality before functionalityQuality before functionalityQuality before functionality

Identifying quality goals firstIdentifying quality goals firstIdentifying quality goals firstIdentifying quality goals first

© 2015 ClearSpecs Enterprises 22

Most quality goals can be accurately identified from knowledge

of the software’s operating environments and basic mission e.g.
flight control, internet gaming, or stock trading, and use of a rich
quality attributes model.

Early identifications may need to be adjusted as understanding
deepens, but there is no way to predict when you have enough
information to accurately determine a quality goal without
waiting until all functional code has been written.

Waiting is an expensive alternative to early identification.

QualityQualityQualityQuality----Aware AgileAware AgileAware AgileAware Agile

© 2015 ClearSpecs Enterprises 23

Quality-Aware development is NOT a development methodology, but
a 3-part supplement to whatever you are doing now or intend to do

It begins with a quality sprint in which you identify quality goals their
levels, priorities, challenges, mitigations, supports, achievement
strategies and verification strategies. You also acquire and verify a
library of crosscutting support components e.g. exception handlers.
Using a rich quality attributes model, it should take less than a week
to draft a quality goals model.

In each iteration, you reassess and carry out the quality strategies.

Finally, you collect the quality lessons during a project retrospective
and record them in the enterprise model of quality attributes and/or in
the development standards.

VVVVoluntary ignoranceoluntary ignoranceoluntary ignoranceoluntary ignorance

© 2015 ClearSpecs Enterprises 24

Voluntary ignorance is choosing NOT to acquire readily-available product
requirements, implementation, and verification information in a timely manner.

Readily available means the information can be acquired “quickly” i.e.

between one hour and one week.

Timely manner means that delay causes significant short-term technical debt.

Waiting for quality attribute requirements to emerge or reach the top of the

backlog rather than using Quality-Aware Agile is an example of voluntary

ignorance.

Replace voluntary ignorance with timely understanding

Wrap upWrap upWrap upWrap up

© 2015 ClearSpecs Enterprises 25

Big Requirements Up-Front (BRUF) is an Agile anti-pattern,

because BRUF is inconsistent with evolving understanding (of

desired functionality) caused by incremental development

We recommend Big Quality Requirements Up-Front (BQRUF)

i.e. a mixed-hybrid strategy, because understanding of quality

goals should not evolve much. Failure to practice BQRUF

always results in significant short-term technical debt.

An OfferAn OfferAn OfferAn Offer

If you have an early stage project,

are interested in trying a “quality sprint”, and

would like an expenses-only week of guidance,

let me know.

© 2015 ClearSpecs Enterprises 26

Questions or Comments

david@clearspecs.com

© 2015 ClearSpecs Enterprises 27

